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a  b  s  t  r  a  c  t

This  paper  retrieves  optical  soliton  solutions  to  the  Fokas–Lenells  equation  in  birefringent
fibers  by  the  application  of extended  trial  function  method.  The  algorithm  reveals  bright  and
singular soliton  solutions  to the model  along  with  several  other  solutions  whose  limiting
case  for  the  modulus  of  ellipticity  yields  soliton  solutions.
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1. Introduction

The phenomena of birefringence in optical fibers is a natural occurrence in fiber optic transmission technology across
inter-continental distances. Manufacturing imperfections and other defects of fibers lead to differential group delay that
eventually accumulates into birefringence. Therefore, this is an unwanted and at the same time an unavoidable feature that
needs to be addressed professionally. The equation that models this dynamics stems from Fokas–Lenells equation (FLE) that
is applicable to a polarization-preserving fiber. This paper will secure soliton solutions to vector-coupled FLE by the aid of
extended trial function method. This is one of the very many integration algorithms that have been fruitfully applied to fluid
dynamics, liquid crystals, DWDM systems, magneto-optic waveguides and various other situations [1–10]. This paper will
detail the derivation of soliton solutions in a birefringent fiber, with this integration scheme, in subsequent sections.
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1.1. Governing equation

The dimensionless form of coupled FLE with spatio-temporal dispersion (STD) is given by [5,8–10]:

iqt + a1qxx + b1qxt +
(
c1|q|2 + d1|r|2

)
(�1q + i�1qx) + qr∗ (�1r + i�1rx) = 0, (1)

irt + a2rxx + b2rxt +
(
c2|r|2 + d2|q|2

)
(�2r + i�2rx) + rq∗ (�2q + i�2qx) = 0, (2)

In (1) and (2), the first term in both of these equations represents the temporal evolution of the pulses in birefringent fibers
and q(x, t) and r(x, t) are complex valued functions that represents the soliton profiles for the two components in birefringent
fibers. For l = 1, 2, al represents the group-velocity dispersion (GVD) and bl are the STD terms along the two components.

1.2. Mathematical analysis

In order to solve this coupled system, a general hypothesis of the solution structure is adopted:

q(x, t) = P1[�(x, t)] exp [i�1 (x, t)] , (3)

r(x, t) = P2[�(x, t)] exp [i�2 (x, t)] , (4)

where Pl(�) for l = 1, 2 represents the amplitude component of the soliton and

� = x − vt, (5)

and the phase component �l is defined as

�l = −�lx + ωlt + 
l, (6)

for l = 1, 2. Here, v is the velocity of the soliton, �l are the frequencies of the solitons in each of the two  components while
ωl are the soliton wave numbers and 
l are the phase constants. Substituting (3)–(6) into (1) and (2) and then decomposing
into real and imaginary parts give

(al − blv)P
′′
l −

(
ωl + al�

2
l − bl�lωl

)
Pl +

(
�l + �l̄�l + dl�l�l + dl�l

)
PlP

2
l̄

+ (cl�l�l + cl�l)P
3
l = 0, (7)

and

(blv�l − v − 2al�l + blωl)P
′
l + dl�lP

2
l̄
P ′
l + �lPlPl̄P

′
l̄
+ cl�lP

2
l P

′
l = 0. (8)

Using the balancing principle implies

Pl̄ = Pl, (9)

and then we have

(al − blv)P
′′
l −

(
ωl + al�

2
l − bl�lωl

)
Pl +

(
�l + �l̄�l + (cl + dl) (�l�l + �l)

)
P3
l = 0, (10)

and

(blv�l − v − 2al�l + blωl)P
′
l + (�l (cl + dl) + �l)P

2
l P

′
l = 0. (11)

Next, setting the coefficients of the linearly independent functions, in (11), to zero is possible to procure the speed of the
soliton

v = 2al�l − blωl
bl�l − 1

, (12)

provided that

bl�l /= 1, (13)

and the constraint conditions

�l (cl + dl) + �l = 0. (14)

Eq. (10) will now be analyzed further along, in the subsequent section, in order to retrieve bright, dark and singular soliton
solutions, and other solutions to the coupled FLE under the conditions �l̄ = �l .
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