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a  b  s  t  r  a  c  t

The  analytical  formulae  of nonparaxial  propagation,  paraxial  propagation  and  far  field
propagation  for  the  partially  coherent  Lorentz-Gauss  vortex  beam  have  been  derived,  the
propagation  properties  of  nonparaxial,  paraxial  and  far  field  propagation  are  analyzed  using
the  derived  formulae.  One  finds  that  the  paraxial  propagation  can  be  seen  as  a special  case
of  the  nonparaxial  propagation  at the  propagation  distance  of the  Rayleigh  length,  and  the
far  field  propagation  can  also  be regarded  as  special  case  of the  nonparaxial  propagation  at
the  longer  propagation  distance.

©  2018  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In past years, with the development of semiconductor lasers with large divergence angles, the description of laser beam
propagating in the nonparaxial regime has attracted much attention of researchers. Various methods have been developed to
describe the beam propagation in the nonparaxial regime, and theory of the generalized Rayleigh-Sommmerfeld diffraction
integral is a convenient method. Recently, Borghi et al. have studied the nonparaxial propagation properties of spirally
polarized optical beam [1]. The vectorial nonparaxial propagation of elliptical Gaussian beam [2] and four-petal Gaussian
beam [3] have been analyzed. Deng et al. have investigated the nonparaxial propagation of radially polarized light beam [4],
hollow Gaussian beam [5] and rotating Cosh-Gaussian beam [6]. Kotlyar et al. have studied the nonparaxial propagation of
a Gaussian optical vortex beam with initial radial polarization [7].

Zhou has investigated the nonparaxial propagation of Lorentz-Gauss beam [8,9]. Huang has investigated then nonparax-
ial propagation of multi-Gaussian Schell-model beam and rectangular multi-Gaussian Schell-model beam [10,11]. Li et al.
have studied the nonparaxial propagation of Airy-Gaussian vortex beam [12]. Liu et al. have studied the nonparaxial prop-
erties of flat-topped vortex hollow beam [13,14], partially coherent four-petal Gaussian beam [15] and partially coherent
Lorentz-Gauss beam [16]. And the nonparaxial propagation properties of the other partially coherent beam have been
investigated, such as partially coherent dark hollow beam [17], partially coherent flat-topped beam [18], partially coherent
anomalous hollow beam [19]. However, the nonparaxial properties of partially coherent Lorentz-Gauss vortex beam have
not be reported in the past years. In this paper, the analytical formulae of nonparaxial propagation, paraxial propagation and
far field propagation for the partially coherent Lorentz-Gauss vortex beam have been derived, the propagation properties
are analyzed using numerical examples.
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2. Theory analysis

In the Cartesian coordinate system, the optical field of a partially coherent Lorentz-Gauss vortex beam propagating along
the z axis at the source plane z = 0 can be written as [20]:
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where W (r10, r20, z) is the cross-spectral density function of partially coherent Lorentz-Gauss vortex beam at the receiver
plane z; r0 = (x0, y0) is  the position vectors at the source plane z = 0; w0x and w0y are the parameters related to the beam
widths of the Lorentz part of the Lorentz-Gauss vortex along the x-axis and y-axis, respectively; w0 is the waist width of the
Gaussian part of the Lorentz-Gauss vortex beam; M is the topological charge of Lorentz-Gauss vortex beam; �x and �y are
the spatial coherence length along the x-axis and y-axis, respectively.

In Eq. (1), the relationship of Lorentz function and Hermite-Gaussian function can be expressed as [21]:
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where N is the number of the expansion and �2m and �2n are the expanded coefficients which can be found in Ref. As the
even numbers 2m increases, the values of �2m dramatically, the N will not be large in the following numerical calculation.
The 2 m order Hermite polynomial H2m (x) can be expressed as [22]:
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and the vortex term of Eq. (1) can be expanded as [22]:
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Based on the Rayleigh-Sommerfeld diffraction integral formula [15,16], the cross-spectral density function of the partially
coherent electromagnetic beams propagating along the z-axis in free space can be expressed as [15–19]:
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where W (r1, r2, z) denotes the cross-spectral density function at the output plane z; r = (x, y) is the position vector at the
receiver plane z; is the wavelength, k = 2�/� is the wave number with � being wavelength ; Ri is the distance between the
source point and the point (xi, yi, z) and which can be written as:
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√
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Considering the nonparaxial propagation in free space, the Ri can be expanded into:
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Recalling the following equations [22]
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