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a  b  s  t  r  a  c  t

In this  paper,  we  investigate  the  propagation  of abruptly  autofocusing  circular  Airy  beams
(CAB)  in  linear  index  potential  both  analytically  and  numerically.  Based  on the  initial  field
located  far  away  from  the center,  we  get the approximate  analytical  solutions  to  describe
the  trajectory  and focal  length  of  CAB  in  linear  index  potential.  The  modified  focal  length
formula  agrees  well  with  numerical  results  for a  wide  range  of the initial  radius of  CAB.
Furthermore,  the  approximate  method  is  also  applicable  to  some  dynamic  potential  varying
along the propagation  coordinate.

©  2018  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In 1979, Berry and Balazs found a nonspreading solution of the potential-free Schrodinger equation: the Airy wave packet
[1]. Using the concept of Airy wave packet in the context of quantum mechanics, Siviloglou et al. introduced theoretically and
demonstrated experimentally the existence of the finite energy asymmetric Airy waves in the area of optics in 2007 [2,3].
These beams exhibit unique properties in propagating: non-spreading, self-healing and self-accelerating along a parabolic
trajectory in free space which is similar to a projectile moving under the influence of gravity [4–7]. Due to these peculiar
characteristics, self-accelerating Airy beams have been a hot topic in the past decade, but also have potential applications in
many areas of physics, such as microscopy [8], lasing [9], micromanipulation of particles [10], optical routing [11], electron
Airy waves [12], and laser micromachining of curved surfaces [13], etc.

Lately, abruptly autofocusing waves based on Airy packets have been proposed theoretically and observed experimentally
without utilizing any lenses or nonlinearities [14–16]. These waves can be generated through the use of radially symmetric
circular Airy waves or by appropriately superimposing one dimensional Airy wave packets. They can abruptly focus its
energy right before a target while maintaining a low intensity profile until that very point. Meanwhile, many other abruptly
autofocusing beams have also been proposed [17–19]. The abruptly autofocusing property makes the wave be an ideal
candidate in biomedical treatment or micromachining with lasers since the abruptly autofocusing wave should only affect
the intended area while leaving any preceding material intact. On the other hand, the modulation of abruptly autofocusing
property is much important in many applications, and it has stirred a wide interest. Several strategies have been proposed
to control the autofocusing dynamics, such as adding different optical vortices [20], blocking front light rings [21], and
introducing a cone angle [22], etc. In addition, similar to traditional beams, the dynamics of abruptly autofocusing waves
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can be manipulated in the presence of an external potential. Up to now, the propagation dynamics of abruptly autofocusing
wave composed of the appropriately superimposing Airy wave packets in linear potential has been discussed [23,24].

In this paper, the propagation of abruptly autofocusing CAB in linear index potential was  analyzed. Approximate analytical
solutions are derived to predict the trajectory and focal position and the solutions are valid for a wide range of the initial
radius of CAB. The formulae of the focal length and trajectory can help us more intuitively understand the autofocusing
behaviors of CAB in linear index potential. By properly designing the refractive-index gradient, the enhancement, reduction,
and complete suppression of the autofocusing effect can be realized. What’s more, the dynamic potential varying along the
propagation direction is also discussed using the same approximate method.

2. Basic theory

The propagation dynamics of abruptly autofocusing CAB in graded index media (�n = −ın

√
x2 + y2 with ın being a

constant) is governed by the following paraxial wave equation:
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where A is the slowly varying envelope of the beam, ∇2
⊥ = ∂2

x + ∂2
y is the transverse Laplacian operator, k is the wavenum-

ber in the medium, n is the refractive index of the uniform medium, and �n  << n indicates the graded index change. Here
we introduce the dimensionless quantities Z = z/kw2

0, X = x/w0, Y = y/w0, where w0 is an arbitrary scaling constant, so that
the paraxial wave equation can be written as follows:
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X2 + Y2 denotes the transverse linear potential, and p = k2w3

0ın/n indicates the
gradient value of the linear index potential. For a symmetrical geometry, Eq. (2) transforms into
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where r =
√

X2 + Y2 is the radial coordinate. Assuming the input beam is an inward CAB

u(r, 0) = Ai(r0 − r) exp[a(r0 − r)], (4)

where Ai(•) denotes the Airy function, a is the decay parameter that makes the wave convey the finite energy, and r0
stands for the initial radius of the main ring. For the inner of the main ring, the CAB decays exponentially, whereas the slowly
decaying oscillations of the Airy tails occur outside this region. Because of the mathematical complication, it is hard to find
the precise analytical solutions of Eqs. (3) and (4). In fact, if the initial radius of the main ring is large enough, almost all energy
is essentially far away from the center during the initial stages of acceleration. As a result, we  can adopt the approximation
∂2

u/∂r2 + ∂u/r∂r ≈ ∂2
u/∂r2. Thus, the third term on the left-hand side of Eq. (3) can be neglected. Consequently, Eq. (3)

becomes
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which is similar to one-dimensional problem. In the computation of the above equation, we  extended the variable r from
zero to minus infinity. Note that this approach is reasonable, even for relatively small ring, due to the exponential decay of
the inner of the main ring. To solve Eq. (5) with the initial condition given by Eq. (4), we  introduce a new variable r′ = r0 − r,
thus Eq. (5) can be expressed in the form
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By introducing a trial solution of the form u(r′, Z) = ϕ(r′, Z) exp(−ipr0Z), Eq. (6) can be simplified as follows
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For an initial truncated Airy distribution ϕ(r′, 0) = Ai(r′) exp(ar′), Eq. (7) has a known solution [25,26]
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