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a  b  s  t  r  a  c  t

In this  paper,  we introduce  a systematic  procedure  for defining  random  discrete  fractional
transforms  of Fourier,  Hartley,  cosine  and sine  types.  The  procedure  is based  on  an  extension
of  the  generating  matrix  method  for constructing  eigenvectors  of  such  transforms.  We
give multiorder  reality-preserving  versions  of  the  referred  transforms,  characterizing  them
with  respect  to  the  number  of  free  parameters  and  illustrating  their  applicability  in  image
encryption.
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1. Introduction

Discrete transforms are mathematical tools applicable in several practical scenarios. In general, the N-point discrete
transform of a sequence x can expressed as

X = Mx, (1)

where M is a N × N matrix whose entries depend on the type of transform being considered; M may  be related to discrete
Fourier, cosine, sine or Hartley transform, for example. If M is diagonalizable (this is the case of the transforms we  just
mentioned), its ath power can be obtained as

Ma = V�aVT , a ∈ R, (2)

where V is a matrix whose columns form an orthonormal set {vm}, m = 0, 1, . . .,  N − 1, of eigenvectors of M and � is a diagonal
matrix whose entries are the corresponding eigenvalues; Ma is the matrix of the fractional version of the transform being
considered.

In the last decades, discrete fractional transforms have been widely investigated and employed in a range of applications in
the fields of signal processing, optics, communications and information security, for instance (see [1] and references therein).
There is a particular interest in discrete fractional transforms whose definition uses randomly constructed eigenvectors as
columns of V in (2) [2,3]; such a construction usually requires the choice of multiple parameters, making the respective
fractional transform suitable for cryptography [4].
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Table  1
Multiplicities of eigenvalues of the discrete Fourier transform matrix.

N # {1} # { − i} # { −1} # {i}
4m m + 1 m m m − 1
4m  + 1 m + 1 m m m
4m  + 2 m + 1 m m + 1 m
4m  + 3 m + 1 m + 1 m + 1 m

Table 2
Multiplicities of eigenvalues of discrete trigonometric transform matrices.

N DHT DCT/DST

# {1} # { −1} # {1} # { −1}
4m 2m + 1 2m − 1 2m 2m
4m  + 1 2m + 1 2m 2m + 1 2m
4m  + 2 2m + 1 2m + 1 2m + 1 2m + 1
4m  + 3 2m + 2 2m + 2 2m + 2 2m + 1

Among the techniques for systematically constructing the referred eigenvectors, we  highlight the one based on generating
matrices [5]. In such a method, it is shown that, if v is an eigenvector of the discrete Fourier transform (DFT) matrix F with
eigenvalue �, the vector v′ = SAv, where

SA = ˛1/2F−1AF + A

and A satisfies F2AF2 = ˛A, is an eigenvector of F with eigenvalue �′ = ˛1/2�; SA is identified as a generating matrix. In this
paper, we extend this result to discrete trigonometric transforms (DTT), which refers to discrete cosine transforms (DCT)
and discrete sine transforms (DST) of types I and IV, and to discrete Hartley transform (DHT). We  then propose a unified
methodology to construct random eigenbases used in the fractionalization of such transforms. Moreover, we explain how
to construct real-valued random fractional DTT and DFT for any N and provide some illustrative results regarding the use
of such transforms in image encryption. We  demonstrate that the number of free parameters involved in the proposed
construction is greater than that provided by other approaches; this is relevant for the mentioned application scenario.

2. Generating eigenbases of discrete transforms

The eigenstructures of discrete transform matrices have been widely investigated [6–9]. It is a well-known fact, for
example, that the only eigenvalues of F are (−i)k, for k = 0, . . .,  3 and i = √−1; given an even-symmetric vector e (resp. odd-
symmetric vector o), one constructs the eigenvector e ± Fe (resp. o ∓ iFo) related to the eigenvalues ±1  (resp. ±i) [6]. On the
other hand, the only eigenvalues of any DTT matrix are (−1)k, k = 1, 2 [7–9]. The multiplicity of any of these eigenvalues is
known and has some peculiarities depending on N. If N = 4n, for example, the multiplicities of eigenvalues 1 and −1 of the
discrete Hartley transform matrix are respectively 2n + 1 and 2n − 1. In our text, we  denote the multiplicity of the eigenvalue
� by # {�}. See Tables 1 and 2 for details.

An eigenvector of a DTT matrix T can be obtained from an arbitrary vector according to the following proposition.

Proposition 1. Let u be an arbitrary vector. The vector v = u ± Tu is an eigenvector of T with eigenvalue � =±1.

Proof. The DTT considered in this paper are all involutions, that is T2 = I. Therefore, one has

Tv = T(u ± Tu) = Tu ± T2u = ±u + Tu = ±v.

Proposition 2. Let A be a N × N matrix and v a N-point eigenvector of the DTT matrix T with eigenvalue �. Therefore v′ = SAv,
where SA =± TAT + A, is an eigenvector of T with eigenvalue �′ =± �.

Proof

Tv′ = TSAv = T(±TAT + A)v = ±ATv + TAv

= ±A�v + TAT2v = ±A�v + TAT�v
= ±�(±TAT + A)v = ±�SAv = ±�v′.

Remark: a less general version of Proposition 2 was introduced in [10]. In that paper, one considers cosine and sine
transforms only and presents an eigenbases construction method not extensible to other transform types.

The generating matrix method can be recursively applied to obtain a set of eigenvectors of a given transform. We  exploit
this possibility in our approach, which requires constructing, for each eigenvalue, one seed eigenvector and one generating
matrix. Since we are interested the referred set to be an orthonormal basis, we  have to verify its linear independence and
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