FI SEVIER

Contents lists available at ScienceDirect

Optik

journal homepage: www.elsevier.de/ijleo

Original research article

Optical solitons to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions under Kerr law nonlinearity

Hasan Bulut^{a,b}, Tukur Abdulkadir Sulaiman^{a,c}, Haci Mehmet Baskonus^{d,*}

- a Department of Mathematics, Firat University, Elazig, Turkey
- ^b Department of Mathematics Education, Final International University, Kyrenia, Cyprus
- ^c Department of Mathematics, Federal University, Dutse, Jigawa, Nigeria
- d Department of Computer Engineering, Munzur University, Tunceli, Turkey

ARTICLE INFO

Article history: Received 25 January 2018 Received in revised form 21 February 2018 Accepted 21 February 2018

Keywords: ShGEEM R-NLSE Kerr law nonlinearity Optical solitons

ABSTRACT

This study uses the extended sinh-Gordon equation expansion method in constructing various optical soliton solutions to the resonant nonlinear Schrödinger equation with both spatio-temporal and inter-modal dispersions. Resonant nonlinear Schrödinger equation expresses the propagation dynamics of optical solitons and Madelung fluids. Dark, bright, combined dark-bright and singular optical solitons are successfully constructed. Under the choice of suitable values of parameters, the two-dimensional, three-dimensional and the contour graphs to some of the acquired results are plotted. The reported results may be useful in explaining the physical meaning of the studied model.

© 2018 Elsevier GmbH. All rights reserved.

1. Introduction

Many complex nonlinear aspects arising in various fields of nonlinear sciences, such as; optical fibers, fluid dynamics, plasmas physics, quantum mechanics etc can be expressed in the form of nonlinear Schrödinger equations (NLSEs) [1–5]. The theory of optical solitons is one of the interesting topics for the investigation of soliton propagation through nonlinear optical fibers [6]. Optical solitons are restrained electromagnetic waves that stretch in nonlinear dispersive media and allow the intensity to remain unchanged due to the balance between dispersion and nonlinearity effects [7]. Various computational approaches have been used to address different kind of NLSEs, such as the generalized Kudryashov method [8], the *F*-expansion method [9], the modified $\exp(-\varphi(\zeta))$ -expansion function method [10], the (G'/G)-expansion method [11], the modified simple equation method [12], the improved $\tan(F(\Phi(\xi))/2)$ -expansion method [13], the sine-Gordon expansion method [14], the ansatz approach [15,16], the extended trial equation method [17], the improved adomian decomposition method [18], the method of dynamical systems [19], the Bäcklund transformations [20], the method of undetermined coefficients [21], the semi-inverse variational principle [22,23], the trial solution method [24,25], and many other powerful integral schemes [26–39].

This study focuses on construction of various optical soliton solutions to the resonant nonlinear Schrödinger equation (R-NLSE) with both spatio-temporal (STD) and inter-modal dispersions (IMD) [40] by using the powerful extended sinh-Gordon equation expansion method (ShGEEM) [41–43].

E-mail addresses: hbulut@firat.edu.tr (H. Bulut), sulaiman.tukur@fud.edu.ng (T.A. Sulaiman), hmbaskonus@gmail.com (H.M. Baskonus).

^{*} Corresponding author.

The resonant nonlinear Schrödinger equation [40,44] is given by

$$i(\psi_t - \delta\psi_x) + \alpha\psi_{xx} + \beta\psi_{xt} + \lambda F(|\psi|^2)\psi + \gamma \left(\frac{|\psi|_{xx}}{|\psi|}\right)\psi = 0, \tag{1.1}$$

where $\psi(x,t)$ is the complex wave profile, x and t are the spatial and temporal variables, respectively. In Eq. (1.1), α , β and δ stand for the coefficients of group-velocity dispersion, STD and IMD, respectively, while λ and γ stand for the coefficients of non-Kerr law nonlinearity and resonant nonlinearity, respectively [40,44].

The R-NLSE is used to models the nonlinear dynamics of optical solitons and Madelung fluids [40,45]. Various integral schemes have been adopted to investigate different kinds of R-NLSE [46–53].

2. The extended ShGEEM

This sections discuses the analysis of the extended sinh-Gordon equation expansion method.

To apply the ShGEEM, we go by the following steps:

Step-1: Consider the following NPDE:

$$F(\psi_x, \psi^2 \psi_{xx}, \psi_t, \psi_{xt}, \ldots) = 0,$$
 (2.1)

where F is a polynomial in ψ , the subscripts indicate the partial derivative of ψ with respect to x or t. Substituting the traveling wave transformation

$$\psi = \Phi(\eta), \quad \eta = x - ct \tag{2.2}$$

into Eq. (2.1), yields the following NODE:

$$O(\Phi, \Phi', \Phi'', \Phi^{2}\Phi', \ldots) = 0, \tag{2.3}$$

where Q is a polynomial in Φ and the superscripts indicate the ordinary derivative of Φ with respect to η .

Step-2: The trial solution to Eq. (2.3) is assumed to be of the form [41]

$$\Phi(\theta) = \sum_{j=1}^{k} [b_j \sinh(\theta) + a_j \cosh(\theta)]^j + a_0, \tag{2.4}$$

where a_0 , a_j , b_j (j=1, 2, ..., k) are constants to be determine later and θ is a function of η that satisfies the following ordinary differential equation:

$$\theta' = \sinh(\theta). \tag{2.5}$$

To find the value of k, the homogeneous balance principle is applied on the highest derivatives and highest power nonlinear term in Eq. (2.3).

Eq. (2.5) is obtained from sinh-Gordon equation [41] given as

$$\psi_{xt} = \lambda \sinh(q).$$
 (2.6)

Eq. (2.5) posses the following solutions [41]:

$$\sinh(\theta) = \pm csch(\eta)$$
 or $\sinh(\theta) = \pm i sech(\eta)$ (2.7)

and

$$\cosh(\theta) = \pm \coth(\eta) \quad \text{or} \quad \cosh(\theta) = \pm \tanh(\eta), \tag{2.8}$$

where $i = \sqrt{-1}$.

Step-3: Inserting Eq. (2.4), its derivatives under fixed value of k along with Eq. (2.5) into Eq. (2.3), yields a polynomial equation in θ^{l} $\sinh^{i}(\theta) \cosh^{j}(\theta)$ (l=0, 1 and i, j=0, 1, 2, . . .). We collect a group of over-determined nonlinear algebraic equations in a_0 , a_i , a_i , c by setting the coefficients of θ^{l} $\sinh^{i}(\theta) \cosh^{j}(\theta)$ to zero.

Step-4: The secured set of over-determined nonlinear algebraic equations is then solved with aid of symbolic software to determine the values of the parameters a_0 , a_j , b_j , c.

Step-5: Based on Eqs. (2.7) and (2.8), Eq. (2.1) posses the following forms of solutions:

$$\Phi(\eta) = \sum_{j=1}^{k} \left[\pm ib_j \operatorname{sech}(\eta) \pm a_j \tanh(\eta) \right]^j + a_0, \tag{2.9}$$

$$\Phi(\eta) = \sum_{j=1}^{k} [\pm b_j \, csch(\eta) \pm a_j \, \coth(\eta)]^j + a_0.$$
(2.10)

Download English Version:

https://daneshyari.com/en/article/7223975

Download Persian Version:

https://daneshyari.com/article/7223975

<u>Daneshyari.com</u>