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a  b  s  t  r  a  c  t

This  paper  obtains  bright  and  dark–singular  combo  solitons  for  the
Lakshmanan–Porsezian–Daniel  model  by the  aid of modified  extended  direct  alge-
braic  method.  Both  Kerr  law  and  power  law  nonlinearities  are  considered.  However,  it
is  only  the  case  of  Kerr  law  that led to  soliton  solutions.  Some  additional  solutions  also
emerged  and  they are  singular  periodic  waves  and  elliptic  functions.

© 2018  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

Optical solitons is one of the fastest growing areas of research in the field of telecommunications engineering. In par-
ticular, Lakshmanan–Porsezian–Daniel (LPD) model has attracted a lot of attention in the past few years to model soliton
transmission through optical fibers and PCF. There are a lot of integration algorithms that have been successfully imple-
mented to extract solitons and solitary waves to a variety of nonlinear evolution equations (NLEEs) [1–20]. Some of these
schemes applied to LPD model, in particular, are method of undetermined coefficients [6], semi–inverse variational principle
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[1], extended trial equation method [5], Lie symmetry analysis [4], tanh method [7] and several others. Apart from these
schemes, some other algorithms that have been implemented to LPD equation and nonlinear Schrödinger’s equation are
traveling wave hypothesis [12,13], Jacobi’s elliptic function scheme [5] and others. This paper applies the modified extended
direct algebraic method to LPD model that is considered with two forms of nonlinear media, namely Kerr law and power
law. Thus, bright and dark–singular combo soliton solutions are recovered from this scheme. In addition, singular periodic
solutions and elliptic function solutions also fall out of this integration process. The details are enumerated in the rest of the
paper.

2. Glimpse of modified extended direct algebraic method

We  assume a NLEE for u(x, t) to be in the form

P(u, ut, ux, utx, utt, uxx, . . .)  = 0, (1)

where P is a polynomial in its arguments. The essence of the modified extended direct algebraic method can be presented
in the following algorithmic steps [9,3,18,17,14,19]:

Step 1: Seeking traveling wave solution to Eq. (2) by taking u(x, t) = U(�) and � = kx − ωt Eq. (2) transforms to the ordinary
differential equation

Q (U, U ′, U ′′, . . .)  = 0, (2)

where primes denote the derivative with respect to �.
Step 2: We  introduce the solution U(�) of Eq. (3) in the finite series that takes the form [9,3,18,17,14,19]

U(�) =
N∑

i=−N
ai�(�)i, (3)

where ai are real-valued constants with aN /= 0 to be determined, N is a positive integer to be determined. The quantity
�(�) expresses the solution of the following equation [14]

�′(�) =
√
c0 + c1�(�) + c2�2(�) + c3�3(�) + c4�4(�) + c5�5(�) + c6�6(�), (4)

where ci are constants and can be discussed as in [20].
Step 3: Determine N. This, usually, can be accomplished by balancing the linear term(s) of highest order with the highest

order nonlinear term(s) in Eq. (3).
Step 4: Substituting Eq. (4) together with Eq. (5) into Eq. (3) yields an algebraic equation involving powers of �(�). Equating

the coefficients of each power of �(�) to zero and discussing the value of ci [20] gives a system of algebraic equations for ai.
Then, we solve the system with the aid of a computer algebra system (CAS), such as Mathematica or Maple, to determine
these constants. On the other hand, depending on the value of parameters ci [20], the solutions of Eq. (3) are well known to
us. Thus, finally, we can obtain exact solutions of the given Eq. (1).

3. Application to LPD model

The dimensionless form of the LPD model with higher order dispersion, full nonlinearity and spatio-temporal dispersion
(STD) to be considered in this work is given by [2,8]

iqt + aqxx + bqxt + cF(|  q|2)q = �qxxxx + ˛(qx)
2q∗ +  ̌ | qx|2q + � | q|2qxx + �q2q∗

xx + ı | q|4q, (5)

where q(x, t) represents the complex-valued wave profile with x and t are the independent spatial and temporal variables
respectively. a is group velocity dispersion, b is the coefficient of quintic nonlinearity, c is the coefficient of nonlinear dis-
persion,  ̨ is the inter-modal dispersion, � accounts for self-steepening with short pulses, � is the higher-order dispersion
coefficient and m is the full nonlinearity parameter.

Now, using the transformation

q(x, t) = P(x, t)ei�(x,t), �(x, t) = −	x + ωt + 
, (6)

where P(x, t) represents the shape of the pulse. Substituting Eq. (6) into Eq. (5) and decomposing into real and imaginary
parts yield

�Pxxxx − (a + 6�	2)Pxx − bPxt − (b	ω − ω − a	2 − �	4)P − (  ̨ + � + � − ˇ)	2P3

+ ıP5 − cF(P2)P + (  ̨ + ˇ)PP2
x + (� + �)P2Pxx = 0,

(7)

and

(1 − b	)Pt − (2a	 + 4�	3 − bω)Px + 2(˛  + � − �)	P2Px + 4�	Pxx = 0. (8)
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