Contents lists available at ScienceDirect

Optik

journal homepage: www.elsevier.de/ijleo

Original research article

Synthesis and luminescence of a new yellowish phosphor $PbGd_{1-x}B_7O_{13}:xDy^{3+}$

Ji Zhao^a, Shan-Xiu Huang^a, Dan Zhao^{a,b,*}, Jun Chen^a, Ye Tian^a, Qiu Zong^a, Yun-Chang Fan^{a,c,*}, Cong-Kui Nie^a, Bao-Zhong Liu^{a,c}

^a College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454000, China

^b State Key Laboratory of Structural Chemistry, Fuzhou, Fujian, 350002, China

^c Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, Henan Province, 454000, China

ARTICLE INFO

Article history: Received 17 January 2018 Accepted 9 February 2018

Keywords: High temperature solid-state reaction Phosphor Photoluminescence Borate Dy³⁺

ABSTRACT

A series of phosphors PbGd_{1-x}B₇O₁₃:xDy³⁺ (x = 0–0.14) were synthesized by the high temperature solid-state reaction method. The as-prepared products were characterized by powder X-ray diffractometer (XRD) and photoluminescence spectrometer (PL). The results indicate that PbGd_{1-x}B₇O₁₃:xDy³⁺ exhibits two emission peaks: the blue emission at around 488 nm due to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ transition and the yellow emission at around 572 nm due to ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ transition. The optimum doping concentration was found to be 6 mol% for Dy³⁺ ion. The commission international Del'Eclairage (CIE) chromaticity coordinates of the phosphors were about (0.394, 0.463), corresponding to yellowish color.

© 2018 Elsevier GmbH. All rights reserved.

1. Introduction

Considerable attention has been attracted on exploring new phosphors owing to the demands of white light emitting diodes (W-LEDs) and plasma display panels (PDPs) [1–3]. Multicolor phosphors for W-LEDs and PDPs are required to have high colorimetric purity, proper decay time and high efficiency under UV or near-UV light excitation. A phosphor is usually composed of a host matrix and some activator ions. Among various host materials, inorganic borates posses low sintering temperature, low cost, broad band gap, high luminous efficiency, and high chemical stability [4–6].

On the other hand, Dy^{3+} ions can serve as efficient activators due to the intense fluorescent transitions in the blue region corresponding to the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ transition and yellow region corresponding to the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ [7]. In recent years, various Dy^{3+} activated borates have been reported as promising candidates for phosphors with high performance [8–10]. The Dy^{3+} ions within these phosphates possess unique optical behavior and have paved the way for the development of optical phosphors. Our previous study has succefully provied a new polyborate compound PbGdB₇O₁₃ [11]. Up to now, the phosphor of Dy^{3+} doped PbGdB₇O₁₃ has never been investigated. In this work, we will report the synthesis and luminescent properties of Dy^{3+} activated PbGdB₇O₁₃.

https://doi.org/10.1016/j.ijleo.2018.02.037 0030-4026/© 2018 Elsevier GmbH. All rights reserved.

^{*} Corresponding authors at: College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454000, China. *E-mail addresses:* iamzd1996@163.com (D. Zhao), fanyunchang@hpu.edu.cn (Y.-C. Fan).

Fig. 1. XRD patterns of samples $PbGd_{1,x}B_7O_{13}$: xDy³⁺ ($0 \le x \le 0.14$) compared to the simulated data from single-crystal data.

2. Experimental section

2.1. Preparation

All of the reaction materials, Pb_3O_4 (\geq 99.5%, Shanghai Reagent Factory), H_3BO_3 (\geq 99.0%, Shanghai Reagent Factory), Gd_2O_3 (\geq 99.9%, Shanghai Reagent Factory), were used without further purification. All powder samples of $PbGd_{1-x}B_7O_{13}:xDy^{3+}$ (x = 0, 0.005, 0.02, 0.06, 0.10, 0.14) were obtained in quantitative yield by the solid state reaction of a mixture of Pb_3O_4 , H_3BO_3 , Gd_2O_3 and Dy_2O_3 in the stoichiometry molar ratio. The mixture was ground with an agate mortar and then pressed into a pellet to ensure optimal homogeneity and reactivity. The pellet was transferred to a 50 ml platinum crucible, which was placed into a muffle furnace heated to 760 °C in the open air for 40 h. In this stage, intermediate grindings were performed every ten hours to improve crystallinity.

2.2. Characterization

X-Ray powder diffraction (XRD) analysis was performed on a Rigaku DMax-2500/PC powder diffractometer, which uses graphite monochromated CuK α radiation in the angular range 2θ = 5–75° with a step size of 0.02°. Photoluminescence (PL) spectra and the life time test were carried out using an FLS920 Edinburgh Analytical Instrument apparatus. A standard Xe900 continuous-wave xenon lamp (450 W) was used as the excitation source for steady-state measurements (stimulation slit width: 1.65 nm, emission slit width: 1.65 nm). The PL excitation and emission spectra was recorded with the step width of 1 nm and integration time of 0.2 s.

3. Results and discussion

3.1. Crystal structure

Single crystal structure of PbGdB₇O₁₃ has been studied in our previous work [11]. Its structure can be described as 2D layer structure that is composed of $[B_7O_{13}]_{\infty}$ layers, $[Gd]_{\infty}$ layers, and Pb_2O_8 dimers. The Pb_2O_8 dimers are encapsulated in a $[B_7O_{13}]_{\infty}$ layer to compensate the charge balance and to maintain structure stability. The XRD patterns of samples $PbGd_{1-x}B_7O_{13}$:xDy³⁺ (x=0-0.14) and simulated from single crystal date of $PbGdB_7O_{13}$ were presented in Fig. 1. It can be clearly observed that all peaks can be indexed to the pure $PbGdB_7O_{13}$ phase and no impurity phase was observed in all samples. Therefore, we confirmed that the solid solutions $PbGd_{1-x}B_7O_{13}$:xDy³⁺ have been formatted. If the reaction temperature increases to 850 °C, the samples will partially melt, resulting in some unknown impurity phases.

3.2. Excitation and emission spectra

As shown in Fig. 2 (left), the excited bands centered at 274 nm $(Gd^{3+}:^{8}S_{7/2} \rightarrow ^{6}I_{J(J=11/2,9/2,7/2)})$, 311 nm $(Gd^{3+}:^{8}S_{7/2} \rightarrow ^{6}P_{J})$, 324 nm $(Dy^{3+}:^{6}H_{15/2} \rightarrow ^{6}P_{3/2})$, 348 nm $(Dy^{3+}:^{6}H_{15/2} \rightarrow ^{6}P_{7/2})$, 363 nm $(Dy^{3+}:^{6}H_{15/2} \rightarrow ^{6}P_{5/2})$, and 385 nm $(Dy^{3+}:^{6}H_{15/2} \rightarrow ^{4}M_{21/2})$ are observed on monitoring the 572 nm emission of Dy^{3+} ions [12]. The strongest one was located in the 348 nm. The existence of two weak bands $(Gd^{3+}:^{8}S_{7/2} \rightarrow ^{6}I_{J(J=11/2,9/2,7/2)})$ and 311 nm $(Gd^{3+}:^{8}S_{7/2} \rightarrow ^{6}P_{J})$ reveals the occurrence of charge transfer from Gd^{3+} ions to Dy^{3+} ions. On the other hand, the excitation properties reveal that phosphor PbGd_{0.94}B_7O_{13}:0.06Dy^{3+} can be effectively excited by near-UV light (350–420 nm).

As shown in Fig. 2 (right), the emission spectrum of Dy^{3+} ions mainly has two emission regions: blue and yellow. The blue emission in the 470–490 nm wavelength range can be attributed to the ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ ground-state transition of Dy^{3+}

Download English Version:

https://daneshyari.com/en/article/7224132

Download Persian Version:

https://daneshyari.com/article/7224132

Daneshyari.com