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This  paper  retrieves  optical  soliton  solution  to the perturbed  complex  Ginzburg–Landau
equation  that  is  studied  with  nine different  forms  of nonlinearity.  The  trial solutions
approach  is  the  integration  algorithm  adopted  in this  paper.  The  perturbation  terms  appear
with full  nonlinearity  to get a  taste  of generalized  setting.  Bright,  dark and  singular  soliton
solutions  are  obtained.  The  existence  criteria  of  such  solitons  are  also  presented.
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1. Introduction

Optical soliton perturbation and in general is one of the most fascinating areas of research in the field of mathematical
photonics. There are several models studied in this context in various areas of mathematical physics [1–15]. The most
fundamental and widely visible model is the nonlinear Schrödinger’s equation. There are several models that stem out of it.
They are Chen–Lee–Liu equation, Sasa–Satsuma model, Gerdjikov–Ivanov equation, Lakshmanan–Porsezian–Daniel model,
Schrödinger–Hirota equation and a variety of other such models. All of them describe the dynamics of soliton propagation
through optical fibers and other forms of waveguides under different circumstances. This paper will study one such model
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that is the complex Ginzburg–Landau equation (CGLE). It is perturbed version will be considered in this paper where the
perturbation terms are all Hamiltonian type and appear with full nonlinearity for a generalized flavor. There are nine different
types of nonlinear media studied. The integration scheme adopted in this paper is known as trial solution method. This
approach to integration has been succesfully applied to various other optical devices such as couplers, metamaterials and
polarization–preserving fibers [3,4,15]. Additionally, this scheme also was  fruitfully applied to the unperturbed CGLE, in
the past [12]. Today, this algorithm will extract bright, dark and singular soliton solutions to perturbed CGLE. These soliton
solutions will be possible for parameter restrictions that are also presented in the paper.

1.1. Model equation

The dimensions form of CGLE is as follows [6–8,12–14]:
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where x represents the non-dimensional distance along the fibers, while t represents time in dimensionless form; a, b, ˛,
 ̌ and � are valued constants. The coefficients a and b come from the group velocity dispersion (GVD) and nonlinearity,

respectively. The terms with ˛,  ̌ and � arise from the perturbation effects in particular, � comes from the detuning effect.
In (1), F is real-valued algebraic function and it is necessary to possess the smoothness of the complex function F
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In presence of perturbation terms, CGLE is modified to
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where ı is the inter-modal dispersion, � represents the coefficient of self-steepening for short pulses and � is the higher-order
dispersion coefficient. The parameter m is responsible for full nonlinearity.

2. A quick glance at trial equation method

In this section we outline the main steps of the trial equation method as following:
Step-1: Suppose a nonlinear PDE with time-dependent coefficients

P (u, ut, ux, utt, uxt, uxx, . . .) =  0 (3)

can be converted to an ordinary differential equation (ODE)

Q
(
U, U ′, U ′′, U ′′′, . . .

)
= 0 (4)

using a travelling wave hypothesis u(x, t) = U(�), � = x − vt, where U = U(�) is an unknown function, Q is a polynomial in the
variable U and its derivatives. If all terms contain derivatives, then Eq. (4) is integrated where integration constants are
considered zeros.

Step-2: Take the trial equation

(
U ′)2 = F (U) =

N∑
l=0

alU
l (5)

where al (l = 0, 1, . . .,  N) are constants to be determined. Substituting Eq. (5) and other derivative terms such as U ′′ or U ′′′ and
so on into Eq. (4) yields a polynomial G(U) of U. According to the balance principle we can determine the value of N. Setting
the coefficients of G(U) to zero, we get a system of algebraic equations. Solving this system, we  can determine v and values
of a0, a1, . . .,  aN.

Step-3: Rewrite Eq. (5) by the integral form
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According to the complete discrimination system of the polynomial, we  classify the roots of F(U), and solve the integral Eq.
(6). Thus we obtain the exact solutions to Eq. (3).
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