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a  b  s  t  r  a  c  t

This  paper  secures  chirped  bright  and  singular  soliton  solutions  in an  optical  metamaterial
that  is considered  with  parabolic  law nonlinearity  and  self-steepening  effect.  The  extended
trial function  method  is  the  integration  scheme  adopted  in  this  paper.  Several  other  solu-
tions such  as  singular  periodic  waves  and  elliptic  functions  naturally  emerge  as  a byproduct
of  this  scheme.
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1. Introduction

There are various kinds of waveguides that support optical soliton propagation for trans-continental and trans-oceanic
distances. This makes the world of telecommunications an engineering marvel. Such waveguides are optical fibers, PCF,
waveguides with rib and ring geometry, laser-induced waveguides, slab waveguides, strip waveguides and various oth-
ers. This paper will address soliton propagation thgrough a newly proposed form of waveguide that is known as optical
metamaterial. There are several results that have been reported with this kind of waveguide dynamics. Several forms of
mathematical architecture have been implemented to study the dynamics of solitons in various waveguides as well as in
other areas of soliton theory [1–20]. This paper studies soliton propagation with parabolic law nonlinearity through an
optical metamaterial that is considered with parabolic law nonlinearity with self-steepening effect which is treated as a
strong perturbation term. The governing model is the nonlinear Schrödinger’s equation (NLSE). The study is conducted with
extended trial function scheme that successfully retrieves bright and singular soliton solutions to the model.
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2. Theoretical model

The NLSE describing the propagation of ultrashort pulses through optical metamaterials governed by parabolic-law
nonlinearity and self-steepening effect is written in the following form [12,14]:
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where  (z, t) is the complex envelope of the electric field, t = cT/�p and z = Z/�p are the respective normalized time and
propagation distance, where �p is the plasma wavelength. k2 stands for the group-velocity dispersion (GVD), while p3, p5
and s1 denote the cubic, pseudo-quintic nonlinearity and the self-steepening effect, respectively.

2.1. Mathematical analysis

To start, we search for the complex envelope traveling-wave solutions to the governing model (1) in the form [1,6–11,17]:

 (z, t) = �(�)ei[�(�)−kz], (2)

where � = t − uz is the traveling coordinate, while � and � are real functions of the traveling coordinate � . Here u = 1/v, with
v the group velocity of the wave packet. The corresponding chirp is given by

ıω(t, z) = − ∂
∂t

[�(�) − kz]  = −�′(�). (3)

Substituting (2) into (1) and separating the real and imaginary parts, we get the following set of equations:
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To solve Eqs. (4) and (5), we adopt the ansatz:

�′ = p�2 + q, (6)

where p and q are the nonlinear and constant chirp parameters, respectively. Accordingly, the resultant chirp takes the form:

ıω(t, z) = −(p�2 + q). (7)

This implies that the chirp associated with propagating pulses is intensity dependent and includes both linear and nonlinear
contributions. Further substitution of the ansatz (6) into Eq. (5) yields the relations of q and p as

p = 3s1
2k2

, q = u

k2
. (8)

As seen from the first relation of (8), the nonlinear chirp parameter depends on the self-steepening coefficient s1. Therefore,
we can conclude that the origin of the nonlinear chirp comes from the higher-order nonlinear effects such as the self-
steepening effect.

Now, employing Eqs. (6) and (8) in Eq. (4), the following elliptic differential equation is obtained:
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where
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Balancing �′′ with �5 in Eq. (9) yields

N + 2 = 5N, (11)

so that

N = 1
2
. (12)

In order to acquire a closed form analytic solution, we utilize a transformation formula

� = U
1
2 . (13)
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