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1. Introduction

The propagation of soliton molecules through optical fibers has drawn lots of attention in telecommunication industry.
Thus, modern day communication technology is not possible without a thorough understanding of the soliton dynamics.
One of the disadvantages of such long-haul communication of optical solitons is the effect of pulse splitting that arises
naturally due to several factors. These include rough handling of optical fibers along with its bend and twist as well as other
such unwanted features that naturally arise. These lead to differential group delay and its cumulative effect gives rise to
birefringence in optical fibers. Therefore, such a feature in optical fibers must be independently addressed.

There has been several mathematical techniques that has been implemented to study these birefringent fibers [1-10].
These include the method of undetermined coefficients [1,3], Lie symmetry analysis [8], extended trial equation method [4]
and several others. This paper will address birefringent fibers with Kerr and parabolic law nonlinearity with the inclusion
of a few Hamiltonian perturbation terms that do not destroy the integrability aspect of the model equation. Our integration
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technique in this paper will be trial equation method which will yield bright, dark and singular soliton solutions in such
fibers. The existence of such solitons are assured with listed constraint conditions. After a quick review of the integration
scheme, the details of the derivation of soliton solutions are discussed in the subsequent section.

2. Revisitation of trial equation method

In this section we outline the main steps of the trial equation method as:
Step-1: Suppose a nonlinear evolution equation with time-dependent coefficients is represented as:
P(u, ut, ux, s, Uxe, Ux, --.) =0 (1)
can be converted to an ordinary differential equation ODE
Qu,u,u’,U”,..)=0 (2)

using a travelling wave hypothesis u(x, t)=U(§), £ =x — vt, where U=U(&) is an unknown function, Q is a polynomial in the
variable U and its derivatives. If all terms contain derivatives, then Eq. (2) is integrated where integration constants are taken
to be zero without any loss of generality since soliton solutions are targeted.

Step-2: Take the trial equation

N
Wy =Fu)=> s (3)
1=0

where §;,(1=0, 1, ..., N) are unknown constants that are yet to be determined. Substituting Eq. (3) and other derivative terms
such as U” or U” and so on into Eq. (2) yields a polynomial G(U) of U. According to the balance principle we can determine
the value of N. Upon setting the coefficients of G(U) to zero, we uncover a system of algebraic equations. Once this system
is solved, we recover v and values of g, 41, .. ., On.

Step-3: Rewrite Eq. (3) in the integral form as

(& -50) = (4)

du
VFU)
Based on the discriminants of the polynomial, we classify the roots of F(U), and subsequently solve the integral Eq. (4). Thus
we can locate exact solutions to Eq. (1).

3. Application to birefringent fibers

This section will apply trial equation scheme to birefringent fibers with two forms of nonlinearity. They are Kerr law
and parabolic law. The details are laid out in the next two subsections where the integration algorithm will be successfully
implemented.

3.1. Kerr law

The dimensionless form of the coupled nonlinear Schrédinger’s equation (NLSE) with group velocity dispersion (GVD)
and spatio-temporal dispersion (STD) for Kerr law nonlinearity is given by [1-4,8-10]

iq; + a1 G + b1Gue + (€11 + d1112)q + i {@1Gx + 2117 + 11191 )2 + 611917 Gx + V1Gxu } =0, (5)
ire + Aarxy + barxe + (G2l + d21q1*)r + i {@arx + Aa(I1P1)e + va(Ir )T + 6217171 + Yalxwe } = 0. (6)

In (5) and (6), q(x, t) and r(x, t) are complex valued functions that represents the soliton profiles for the two components
in birefringent fibers. For [=1, 2, q; and b, represent GVD and STD terms along the two components respectively. It was
demonstrated during 2012 that one needs to consider STD in addition to GVD so that the governing equation is well-posed
[6,7].Then, c; and d; represents the self-phase modulation and cross-phase modulation terms respectively. In the perturbation
terms o, represents the inter-modal dispersion, A, is the self-steepening term, v; and 6, are nonlinear dispersions and finally
y) is the third order dispersion that must be taken into account whenever GVD or/and STD is/are negligibly small.

In order to solve these equations by the trial equation method, the following solution structure is hypothesized

q(x, t) = Py(§)e1t0), (7
r(x, t) = Py(§)e'®2%0), (8)
where the wave variable £ is given by

& = k(x —vt). (9)
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