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Abstract: The study of complete synchronization in networks of periodic and
chaotic neurodynamical elements with different coupling configurations is per-
formed. Using the connection graph stability method we obtain the sufficient
conditions for achievement of synchronous behavior of all elements involved in
these ensembles. The theoretical predictions we compare with the numerical results
obtained for the networks composed of the classical Hodgkin-Huxley neuronal
elements. The problem how to control the synchronization of networks growing in
time is discussed. Copyright c© 2007 IFAC

Keywords: Neural networks, synchronization, stability criteria, chaotic behavior

1. INTRODUCTION

The stability of a synchronous state in large
ensembles of coupled oscillators is one of the most
intensively studied problem arising in different
fields of science. This topic is of significant interest
in the context of electronic circuits, chemical and
biological systems, and secure communication (for
particular examples see (Pikovsky et al., 2001)).

In the present work we study the complete syn-
chronization in the context of neural networks.
The dynamics of individual element of the net-
work is described by the classical Hodgkin-Huxley
equations (Hodgkin and Huxley, 1952). Several
types of possible topology for the network are ex-
amined. Among the objectives of the study of such
networks is to get a better understanding of ba-
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sic mechanisms of sensory processing, motor con-
trol, memory and higher information-processing
functions of the brain. From experimental works
of Swadlow (1992) on mammalian neocortex it
is known that the delays on the synaptic con-
nections could be small enough. In this case a
synfire activity of the neurons in a network should
be considered (Izhikevich, 2006). Only such type
of activity can provide further transmission of
information along the network. The point is that,
the synchronously generated spikes arrive to the
target at the same time, thereby evoking potent
postsynaptic responses. If the neurons fire asyn-
chronously their spikes arrive to the postsynaptic
target at different times evoking only weak or
no response. In this context, the stability of the
synfire activity is of great importance.

In order to determine the stability, various criteria
can be used (Pecora and Carroll, 1998; Pogromsky
and Nijmeijer, 2001; Wu and Chua, 1996). In this
work the results of theoretical prediction obtained
within the framework of recently developed con-



nection graph stability method (Belykh et al.,
2004) are presented. These results are compared
with the data of numerical calculations. Some
aspects of the synchronization in multilayered
neuronal networks that are suggestive of sensory-
motor systems are also touched upon.

2. COMPLETE SYNCHRONIZATION: THE
STATE OF THE PROBLEM

Let us consider a network of n coupled identical
oscillators:

ẋi = F (xi) +
n∑

j=1

εij(t)Pxj , i = 1, ..., n (1)

Here xi = (x1
i , x

2
i , ..., x

d
i ) is the d-vector containing

the coordinates of the i-th oscillator, F (xi) is a
nonlinear vector function defining the dynamics
of the individual element. The non-zero elements
of the (d × d) matrix P = diag(p1, p2, ..., pd),
where ph = 1 for h = 1, 2, ..., s and ph = 0 for
h = s + 1, ..., d determine which variables couple
the individual systems.

The matrix G = {εij(t)} is an (n × n) symmetric
matrix with non-negative off-diagonal elements.
The diagonal elements of the connectivity matrix
are chosen from a necessary condition for the ex-
istence of the synchronous solution of the system
(1), namely, the invariance of hyperplane M =
{x1(t) = x2(t) = ... = xn(t)}. This means that
diagonal elements of the matrix G are assumed
to be equal εii = −∑n

j=1;j �=i εij , i = 1, 2, ..., n.
The global asymptotical stability of the invari-
ant manifold M corresponds to the completely
synchronous state of the network. In this case
any trajectory of the system (1) unrestrictedly
converges to any attractor on M .

The connectivity matrix G defines a graph with
n vertices and m edges. The number of edges
m equals the number of non-zero above diagonal
elements εij . The i-th vertex of the graph corre-
sponds to the i-th oscillator of the network. There-
fore, if l-th and k-th oscillators of the ensemble are
coupled, i.e. εlk = εkl > 0, then the corresponding
graph has the edge linking l-th and k-th vertices.
Between these vertices there is a path with the
unit length Plk. For the general case the length
of the path z(Pij) equals to the number of edges
involved in Pij , that links i-th and j-th vertices in
accordance with the connectivity matrix G.

The main statement of the connection graph sta-
bility method is that for the definite conditions
(see (Belykh et al., 2004)) synchronization mani-
fold M = {x1(t) = x2(t) = ... = xn(t)} is globally
asymptotically stable if the following inequality
holds:

εk(t) > ε∗k =
a

n
bk(n,m) (2)

where bk(n,m) =
∑n

j>i;k∈Pij
z(Pij) is the sum

of the lengths of all chosen paths Pij which pass
through a given edge k that belongs to the cou-
pling configuration. The parameter a is a constant
related to the dynamical properties of the individ-
ual dynamical systems.

In general, the dynamics of the elements in net-
works can be described by an arbitrary model.
In computational neuroscience there are a lot of
mathematical models illustrating the richness and
complexity of spiking behavior of individual neu-
rons. These models are defined at a different level
of abstraction and trying to simulate different
aspects of neural systems. The choice of a certain
model depends on the type of the problem. This
could be, for example, some conductance-based
models such as Morris-Lecar describing oscilla-
tions in barnacle giant muscle fiber, or Wilson
model for cortical neurons, etc. This could be
some phenomenological neuronal models such as
FitzHugh-Rinzel or Hindmarsh-Rose model, etc.
Therefore, in the following theoretical approach
the synchronization threshold of the form

ε̃∗k =
ε∗k
a

=
bk(n,m)

n
, (3)

will be considered. According to (3), the variety of
the sums bk(n,m) gives the variety of synchroniza-
tion thresholds ε̃∗k, that are sufficient to achieve
globally stable synchronization in system (1).

3. TWO STAR-COUPLED NETWORKS
CONNECTED BY THE CHAIN

In this section let us consider a network composed
of n elements, whose topology is illustrated in
Fig. 1. From neurophysiological point of view this
type of the structure corresponds to a couple of
diffusively connected pacemaker neuronal cells.
For convenience, we introduce the following no-
tations: mc is the number of elements in the chain
linking the central nodes of the stars; ml

st and ms
st

are the numbers of elements for the most loaded
star and the star with low concentration of load,
respectively. Thus, the total number of cells in the
network is n = ml

st + ms
st + mc.
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Fig. 1. The coupling structure of an ensemble with two

stars connected by the chain.
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