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a  b  s  t  r  a  c  t

Identification  of  performance  parameter  of  a multi-level  open  quantum  system  is  a central
problem  in  a growing  number  of  applications  of  information  engineering.  Based  on the
quantum  tomography,  this  paper  aims  at finding  a method  for identifying  reduced  density
matrix of open  quantum  system.  State  identification  of  open  quantum  system  approaches
is presented  for  two-level,  three-level  and  N-level  systems,  respectively.  The  results  show
that  not  only  the reduced  density  matrix  can  be  reestablished,  but also the quantum  state
information  can  be received  in  quantum  tomography  experiment.

© 2018  Published  by Elsevier  GmbH.

1. Introduction

Recently, much effort has been put into the design and realization of large scale quantum devices operating. This has
been spurred by the possibilities offered by quantum communication and information processing, from secure transmission,
simulation of quantum dynamics, and the solution of currently intractable mathematical problems. Many different physical
systems have been proposed as basic architectures upon which to construct quantum devices, ranging from atoms, ions,
photons, quantum dots and superconductors [1–3]. For large scale commercial applications, it is likely that this will involve
scalable engineered and constructed devices with tailored dynamics requiring precision control. Then characterization and
control of quantum systems is a key problem in quantum computation and control [4–8].

Quantum state as a unit of quantum information is the main research object in quantum computation and control [9–11].
Since quantum states follow the laws of quantum mechanics, quantum non-cloning theorem and uncertainty relationship
result in “quantum collapse” phenomenon when quantum states are measured, which makes information of quantum system
acquisition much difficult.

Indeed, the system real state cannot be measured directly. We  can only measure the collapse probability of quantum
system in a projection direction, which is fundamentally different from the features of macro system. Therefore measure can
only estimate the real state in the quantum system (quantum state reconstruction). At present, the quantum state estimation
is divided into three main aspects: the estimation of the initial state of the finite dimensional quantum system [12]; the
evolution of a series and the information based on an observable quantity state estimation [13]; state estimation based
on historical records of continuous measurement of individual quantum systems [14]. The last aspect, also known as the
estimation of quantum processes.
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Quantum tomography is a standard technique for the estimation of the quantum state. The term, quantum tomography,
comes from medical X-ray computer-aided tomography (CT), and it is a statistical measurement method [15]. According
to quantum mechanics we know that a quantum system density matrix contains all the system information, so the system
information is totally obtained if the system density matrix can be acquired. Quantum tomography can reconstruct density
matrix by measuring a large number of unknown quantum state in the same status to get quantum state information. The
results show that quantum tomography is an effective and feasible method to obtain quantum state information.

In Ref. [16], the authors studied the minimal informational complete measurements for pure states, and discussed the pure
state reconstruction based on measurement outcomes. A paper published in 2011 initiated another approach to quantum
tomography which is based on weak measurement. The paper revealed that the wave function of a pure state can be measured
in a direct way [17]. Further papers proved that this approach can be generalized also for mixed state identification [18].
Practical quantum systems are open quantum systems because of the interaction with the external environment, which
makes the system model more complicated. Some celebrated results have been achieved on the estimation of unknown
dynamical parameters of open quantum systems [19].

Different from classical systems, a closed or open quantum system described by the quantum Liouville equation is a
complex-valued dynamics due to the physical properties of quantum states. To exploit the well-developed results from
classical computer-aided tomography and control theory into quantum control, one of the inspiring strategies is to derive a
real-valued dynamics to replace the complex-valued quantum Liouville equation.

In this paper, we discuss quantum state reconstruction of open quantum systems based on reduced density matrices. We
will show that a quantum state is characterized of a set of real value parameters and thus can be uniquely determined by a
series of measurements. Based on the discussion on the quantum state identification, we  will propose a strategy to obtain
the real-valued dynamics. Specially, we will deduce the dynamics for n-level system.

The rest of this chapter is organized as follows. In Section 2, the quantum state identification strategy is presented. In
Sections 3, the real-valued equations are deduced for two- and three-level systems, respectively. In Section 4, the results
are extended to n-level systems. Section 5 is for our conclusions.

2. Quantum dynamics

In quantum mechanics, the state of quantum system can be described by many ways. A quantum system with a state
vector

∣∣ 〉 is called a pure state, which can be described by the wave function that evolves according to Schrodinger equation.
However, it is also possible for a system to be in a statistical ensemble of different state vectors. Mixed states arise in situations
where the experimenter does not know which particular states are being manipulated. Examples include a system in thermal
equilibrium or a system with an uncertain or randomly varying preparation history (so one does not know which pure state
the system is in). Also, if a quantum system has two or more subsystems that are entangled, then each subsystem must be
treated as a mixed state even if the complete system is in a pure state. The density matrix �is especially useful for mixed
states, because any state, pure or mixed, can be characterized of a single density matrix.

The density matrix is a representation of a linear operator called the density operator. The density matrix is obtained from
the density operator by choice of basis in the underlying space. In practice, the terms density matrix and density operator are
often used interchangeably. The density matrix or density operator�is self-adjoint (or Hermitian), positive semi-definite, of
trace one, and may  be infinite-dimensional.

For a finite-dimensional function space, the most general density operator is of the form

� =
∑
j

pj
∣∣ j〉  〈

 j
∣∣ , (1)

where the coefficients pjare non-negative and add up to one. This represents a statistical mixture of pure states. If the given
system is closed, then one can think of a mixed state as representing a single system with an uncertain preparation history,
as explicitly detailed above; or we can regard the mixed state as representing an ensemble of systems, i.e. a large number
of copies of the system, where pjis the proportion of the ensemble being in the state

∣∣ j〉.
It can not only denote pure state but also denote mixed state, especially can conveniently extend to infinite dimensional

physical space. Therefore, the density operator �is adopted to represent the state of system. Just as the Schrödinger equation
describes how pure states evolve in time, the Liouville equation describes how a density operator evolves in time. In the
Hilbert space H, the dynamical evolution of the system state satisfies the quantum Liouville equation [20]

d�

dt
= −i [H0 + HC, �] + D[�]�, (2)

where the brackets denote a commutator[A, B] = AB − BA.D[�]�is the super-operator, which depends on the interaction
between system and surrounding environments.

Let F be an observable of the system, the expectation value of the measurement can be calculated

F̄ = tr (�F) .  (3)

Different from many classical systems, the evolution of a close or open quantum system is described by the Liouville
equation, which is a complex-valued equation due to the physical properties of quantum states. It is emphasized that, for
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