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a  b  s  t  r  a  c  t

The  modified  simple  equation  method  applied  to  perturbed  complex  Ginzburg–Landau
equation  gives  dark and  singular  solutions  to the  model.  The  perturbation  terms  appear
with full  nonlinearity.  There  are  eight  nonlinear  forms  studied  in  this  paper.  These  solitons
appear  with  constraint  conditions  that gurantee  its  existence  and  these  are  also  presented.

© 2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The complex Ginzburg–Landau equation (CGLE) is one of the many models that studies the dynamics of optical soliton
propagation through a wide range of waveguides such as crystals, optical fibers, optical couplers, optical metamaterials and
metasurfaces as well as PCF. This model is an extended version of the usual nonlinear Schrödinger’s equation that is visible
all across. These models and other nonlinear evolution equations, that arise in mathematical photonics as well as other areas
of mathematical physics, are all successfully addressed by the modified simple equation method [1–10]. When perturbation
terms are turned on, the perturbed CGLE will be addressed in this paper by the modified simple equation method. There are
eight forms of nonlinear media that will be studied. All of these nonlinear forms will lead to the retrieval of dark and singular

∗ Corresponding author.
E-mail address: qinzhou@whu.edu.cn (Q. Zhou).

https://doi.org/10.1016/j.ijleo.2017.12.131
0030-4026/© 2017 Elsevier GmbH. All rights reserved.

https://doi.org/10.1016/j.ijleo.2017.12.131
http://www.sciencedirect.com/science/journal/00304026
http://www.elsevier.de/ijleo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijleo.2017.12.131&domain=pdf
mailto:qinzhou@whu.edu.cn
https://doi.org/10.1016/j.ijleo.2017.12.131


400 A. Biswas et al. / Optik 158 (2018) 399–415

soliton solutions to the governing model. The existence of these solitons will be guaranteed with the constraint conditions in
the parameters. The perturbation terms are all of Hamiltonian type. After a quick recapitulation of this integration scheme,
soliton solutions will be derived in the subsequent subsections.

1.1. The model

The dimensions form of CGLE is [2–4,6–8]:
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where x is the spatial variable that represents the non-dimensional distance along the fiber, while t is the temporal variable.
Then, a, b, ˛,  ̌ and � are valued constants. The coefficients a and b come from the group velocity dispersion and nonlinearity,
respectively. The terms with  ̨ and  ̌ are additional nonlinear terms and � comes from detuning effect.

In (1), F is real-valued algebraic function and it is necessary to possess the smoothness of the complex function F
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In presence of perturbation terms, CGLE gets extended to [4]:
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where ı is the inter-modal dispersion that arises in addition to chromatic dispersion, � represents the self-steepening effect
for short pulses and � is the higher–order dispersion coefficient. The parameter m accounts for full nonlinearity.

2. Revisitation of the integration algorithm

Suppose we have a nonlinear evolution equation in the form [1,5,9,10]:

P (u, ut, ux, utt, uxt, uxx, ...) = 0 (3)

where P is a polynomial in u(x, t) and its partial derivatives in which the highest order derivatives and nonlinear terms are
involved. In the following, we give the main steps of this method.

Step-1: We  use the transformation

u(x, t) = U(�), � = x − ct, (4)

where c is a constant to be determined, to reduce Eq. (3) to the following ODE:

Q
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)
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where Q is a polynomial in U(�) and its total derivatives, while ′ = d/d�.
Step-2: We  suppose that Eq. (5) has the formal solution
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where al are constants to be determined, such that aN /= 0, and  
(
�
)

is an unknown function to be determined later.
Step-3: We  determine the positive integer N in Eq. (6) by considering the homogeneous balance between the highest

order derivatives and the nonlinear terms in Eq. (5).
Step-4: We  substitute (6) into (5), then we calculate all the necessary derivatives U′,U ′′, . . . of the unknown function U(�)

and we account the function U(�). As a result of this substitution, we  get a polynomial of  ′ (�)/ (�) and its derivatives.

In this polynomial, we gather all the terms of the same power of  −j (�), j = 0, 1, 2, . . . and its derivatives, and we  equate
with zero all the coefficients of this polynomial. This operation yields a system of equations which can be solved to find ak
and  

(
�
)

. Consequently, once can retrieve the exact solutions of Eq. (3).

3. Soliton solutions

In order to solve Eq. (2) by the trial equation method, we start with the following wave transformation

q(x, t) = U(�)ei�(x,t), q∗(x, t) = U(�)e−i�(x,t) (7)

where U(�) represents the shape of the pulse, � = x − vt and � =− �x + ωt + 	. The function �(x, t) is the phase component of
the soliton, � is the soliton frequency, while ω is the wave number, 	 is the phase constant and v is the velocity of the soliton.
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