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Abstract: We consider a control problem for the heating process of an elastic plate. The heat flux
within the plate is modeled by the heat equation with nonlinear Neumann boundary conditions
according to Newton’s law. As input at a part of the boundary we take the nonlinearly transformed
and modulated heat production of a separate heater which is given by a nonlinear Duffing-type
ODE. This ODE depends on measurements of the temperature within the plate and on Bohr
resp. Stepanov almost periodic in time forcing terms. The physical problem is generalized to
a bifurcation problem for non-autonomous evolution systems in rigged Hilbert spaces. Using
Lyapunov functionals, invariant cones and monotonicity properties of the nonlinearities in certain
Sobolev spaces, we derive frequency domain conditions for the existence and uniqueness of an
asymptotically stable and almost periodic in time temperature field.
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1. INTRODUCTION

Let us introduce some function spaces. We follow the
representation in Pankov [1990]. Suppose (E, ‖ · ‖E) is a
Banach space.

If J ⊂ R is an interval, denote by C(J ;E) the space of
all continuous functions from J to E, endowed with the
topology of uniform convergence on compact sets. If J = R

or J = R+ the space Cb(J ;E) is the subspace of C(J ; E)
of bounded functions equipped with the norm

‖f‖Cb
:= sup

u∈J
‖f(u)‖E .

The Banach space of Stepanov bounded on J = R or J = R+

functions (of exponent p = 2) is the space BS2(J ;E) which
consists of all functions f ∈ L2

loc(J ;E) having finite norm

‖f‖2
S2 := sup

t∈J

∫ t+1

t

‖f(τ)‖2
E dτ .

A subset S ⊂ R is relatively dense if there is a compact
interval K ⊂ R such that (s + K) ∩ S �= ∅ for all s ∈ R. A
function f ∈ Cb(R ;E) is said to be Bohr almost periodic if
for any ε > 0 the set

{τ ∈ R | sup
s∈R

‖f(s + τ) − f(s)‖ ≤ ε}
of ε-almost periods is relatively dense in R.

For a function f ∈ L2
loc(R;E), put

f b(t) := f(t + w), w ∈ [0, 1], t ∈ R .

The function fb(t) is regarded as a function with values in
the space L2(0, 1;E). Then

BS2(R;E) = {f ∈ L2
loc(R;E)|f b ∈ L∞(R;L2(0, 1;E))}
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and, moreover, ‖f‖S2 = ‖f b‖L∞ .

A function f ∈ BS2(R;E) is called an almost periodic func-
tion in the sense of Stepanov and of exponent 2 (abbreviated
S2-a.p.) if f b ∈ CAP(R;L2(0, 1;E)). In this case the ε-
almost periods of f b are called the ε-almost periods of f .
The space of S2-a.p. functions with values in E is denoted
by S2(R;E). Obviously, CAP (R;E) ⊂ S2(R;E).

2. CONTROL SYSTEMS IN LUR’E FORM WITH A
DUFFING TYPE NONLINEARITY

Let V1 ⊂ V0 ⊂ V−1 be a Gelfand rigging of the real Hilbert
space V0, i.e. a chain of Hilbert spaces with dense and
continuous inclusions. Denote by (·, ·)Vj

and ‖ · ‖Vj
, j =

1, 0,−1, the scalar product resp. norm in Vj(j = 1, 0,−1)
and by (·, ·)V−1,V1 the pairing between V−1 and V1.

Let A0 ∈ L(V1,V−1) be a linear operator, b0 ∈ V−1

a generalized vector, c0 ∈ V0 a vector and d0 < 0 a
number. According to the vectors c0 and b0 we introduce
the linear operators C0 ∈ L(V0, R) and B0 ∈ L(R,V−1) by
C0ν = (c0, ν)V0 , ∀ ν ∈ V0, and B0ξ := ξb0, ∀ξ ∈ R.

Assume that φ : R × R → R and g : R → R are two scalar-
valued functions. Our aim is to study a system of indirect
control Leonov et al. [1992], which is formally given as

ν̇ = A0ν + b0[φ(t, z) + g(t)] ,
ż = (c0, ν)V0 + d0[φ(t, z) + g(t)] . (1)

Let us demonstrate how (1) can be written as a standard
control system. Consider for this the Gelfand rigging Y1 ⊂
Y0 ⊂ Y−1, in which

Yj := Vj × R , j = 1, 0,−1 . (2)
The scalar product (·, ·)j in Yj is introduced as



(
(ν1, z1), (ν2, z2)

)
j

:= (ν1, ν2)Vj
+ z1z2, where

(ν1, z1), (ν2, z2) ∈ Yj are arbitrary. The pairing between
Y−1 and Y1 is defined for (h, ξ) ∈ V−1 × R = Y−1 and
(ν, ς) ∈ V1 × R = Y1 through

((h, ξ), (ν, ς))−1,1 := (h, ν)V−1,V1 + ξ ς . (3)

Let b :=
[

b0
d0

]
∈ Y−1 and c :=

[
0
1

] ∈ Y0 . Suppose further that
the operators C ∈ L(Y0, R) and B ∈ L(R, Y−1) are given as

Cy = (c, y)0 , ∀ y ∈ Y0 , Bξ = ξb , ∀ ξ ∈ R ,

and the operator A ∈ L(Y1, Y−1) is defined as

A :=
[
A0 0
C0 0

]
.

Consider now the system
ẏ = Ay + B [φ(t, z) + g(t)] , z = Cy , (4)

which is equivalent to (1) through y = (ν, z). If −∞ ≤ T1 <
T2 ≤ +∞ are arbitrary, we define the norm for Bochner
measurable functions in L2(T1, T2;Yj), j = 1, 0,−1, by

‖y‖2,j :=

(∫ T2

T1

‖y(t)‖2
j dt

)1/2

. (5)

Let W(T1, T2;Y1, Y−1) be the space of functions
y such that y ∈ L2(T1, T2;Y1) and ẏ ∈ L2(T1, T2; Y−1),
equipped with the norm

‖y‖W(T1,T2;Y1,Y−1) :=
(‖y‖2

2,−1 + ‖ẏ‖2
2,−1

)1/2
. (6)

Let us introduce the following assumptions (A1) – (A6)
about the operator A0 ∈ L(V1,V−1), the vectors b0 ∈ V−1

and c0 ∈ V0, and the functions φ and g.

(A1) For any T > 0 and any
(f1, f2) ∈ L2(0, T ;V−1 × R) the problem

ν̇ = A0ν + f1(t) , (7)
ż = (c0, ν)V0 + f2(t) , (ν(0), z(0)) = (ν0, z0)

is well-posed, i.e. for arbitrary (ν0, z0) ∈ Y0,
(f1, f2) ∈ L2(0, T ;V−1 × R) there exists a unique solution
(ν, z) ∈ W(0, T ;Y1, Y−1) satisfying (7) in a variational sense
and depending continuously on the initial data, i.e.

‖(ν, z)‖2
W(0,T ;Y1,Y−1)

≤
k1‖(ν0, z0)‖2

V0×R
+ k2‖(f1, f2)‖2

2,−1 , (8)
where k1 > 0 and k2 > 0 are some constants .

(A2) There is a λ > 0 such that A0 + λI is a Hurwitz
operator .

(A3) For any T > 0, (ν0, z0) ∈ V1 × R, (ν̃0, z̃0) ∈ V1 × R

and (f1, f2) ∈ L2(0, T ;V1 × R) the solution of the direct
problem (7) and the solution of the adjoint problem

˙̃ν = −(A+
0 + λ I)ν̃ + f1(t)

˙̃z = −C+
0 z̃ − λ z̃ + f2(t) (9)

are strongly continuous in t in the norm of V1 × R .

(A4) The pair (A0, b0) is L2-controllable, i.e. for arbitrary
ν0 ∈ V0 there exists a control ξ (·) ∈ L2(0,∞; R) such that
the problem

ν̇ = A0ν + b0ξ , ν(0) = ν0

is well-posed in the variational sense on (0,∞) .

Introduce by (c denotes the complexification)
χ(p) =

(
cc
0, (A

c
0 − pIc)−1 bc

0

)
V0

, p ∈ ρ(Ac
0)

the transfer function of the triple (Ac
0, b

c
0, c

c
0) .

(A5) Suppose λ > 0 and κ1 > 0 are parameters, where λ
is from (A2). Then:

a) λd0 + Re (−iω − λ)χ(iω − λ)+
κ1 |χ(iω − λ) − d0 |2 ≤ 0 , ∀ω ≥ 0 . (10)

(A6) The function φ : R × R → R is continuous and
φ(t, 0) = 0, ∀ t ∈ R. The function g : R → R belongs
to L2

loc(R ; R). There are numbers κ1 > 0 (from (A5)),
0 ≤ κ2 < κ3 < +∞, β1 < β2 and ζ2 < ζ1 such that:

a) β1 < g(t) < β2 , (11)

for a.a. t from an arbitrary compact time interval ;
b) (φ(t, z) + βi)(z − ζi) ≤ κ1(z − ζi)2, i = 1, 2 ,

∀ t ∈ R, ∀ z ∈ [ζ2, ζ1] ; (11a)

c) κ2(z1 − z2)2 ≤ (φ(t, z1) − φ(t, z2))(z1 − z2) ≤
κ3(z1 − z2)2 , ∀ t ∈ R, ∀ z1, z2 ∈ [ζ2, ζ1] . (11b)

We assume in the next theorem that the solutions of (1)
are for every T > 0 elements of the space W(0, T ;Y1, Y−1).
Then we show the existence of solutions with initial states
from a certain set.

Theorem 1. Assume that for system (1) the hypotheses
(A1) – (A6) are satisfied. Then there exists a closed,
positively invariant and convex set G such that

{(ν, z) ∈ V1 × R | ν = 0, z ∈ [ζ2, ζ1]} ⊂ G ⊂
{(ν, z) ∈ V1 × R | z ∈ [ζ2, ζ1]} . (12)

In order to prove this Theorem we need some auxiliary
results. The full proof of Theorems 1 – 3, which will be
published elsewhere, is based on the frequency theorem
Likhtarnikov and Yakubovich [1976], Yakubovich [1964]. A
similar approach was used in Reitmann [2005], Reitmann
and Kantz [2004].

Suppose that Y1 ⊂ Y0 ⊂ Y−1 is a Gelfand rigging of Y0, ‖ ·
‖j , (·, ·)j are the corresponding norms and scalar products,
respectively, and (·, ·)−1,1 is the pairing between Y−1 and
Y1. Consider the linear system

ẏ = Ay , z = (c, y)0 , (13)
where A ∈ L(Y1, Y−1) and c ∈ Y0.

Assume that for each y0 ∈ Y0 there exists a unique solution
y(·, y0) of (13) in W(0,∞) satisfying y(0, y0) = y0. In the
sequel we need the following assumption Brusin [1976].

(A7) The space Y0 can be decomposed as
Y0 = Y +

0 ⊕ Y −
0 such that the following holds:

a) For each y0 ∈ Y +
0 we have lim

t→∞ y(t, y0) = 0. For each

y0 ∈ Y −
0 there exists a unique solution y−(t) = y(t, y0)

of (13), defined on (−∞, 0), such that lim
t→−∞ y−(t) = 0

and (c, y(t, y0))0 = 0, ∀ t ≥ 0 , if and only if y0 = 0.
b) For each y0 ∈ Y +

0 the equality (c, y(t, y0))0 = 0,
∀ t ≤ 0, holds if and only if y0 = 0 . For each y0 ∈ Y −

0
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