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Abstract: The paper, describes the problem of stability of oscillations in nonlinear feedback systems. 
The concept of stability is defined in a way that makes the problem tractable using the absolute 
stability approach. The result is formulated in frequency domain and has the form of the Zames-Falb 
multiplier, which makes it amenable to geometric interpretation. Numerical examples are given to 
illustrate the application of the new result to cases, where the Circle Criterion is not applicable. The 
advantage of the new criterion is that only the period of the oscillations needs to be known, not the 
complete expression of the oscillatory solution.  Copyright © 2002 IFAC 
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1. INTRODUCTION 
 

The problem of stability of periodic motion was first 
formulated in the classic book by Lyapunov (1992) and has 
since received considerable attention from many 
researchers, including Lyapunov himself.  

The standard approach to this problem involves the 
investigation of the so-called variation equation. For the 
local stability problem, this approach leads to the well-
studied linear differential equations with periodic 
coefficients (Yakubovich and Starzhinskii, 1975). The 
stability criteria involve computation of the Floquet 
multipliers, and various ad hoc estimation techniques. They 
are applicable to both forced and autonomous oscillations. 

Another approach involves the use of the fixed-point 
theory. It is described in some length in the monographs by 
Holtzman (1974) and Burton (2005). Topological methods 
are studied in the book by Krasnoselskii (1968). These 
methods are applicable only to forced oscillations.  

The approach proposed in this paper differs from the 
previous work in several ways. First, the nonlinear 
variation equations are studied instead of the linearized 
ones, leading to global, as opposed to local, stability 
results. Secondly, the proposed approach uses the known 
absolute stability criteria and, therefore, does not require 
any information about the periodic solution except for its 
period. Finally, the resulting criteria are much easier to 
check than the standard ones involving Floquet multipliers 
found in many standard textbooks on differential equations. 
The results are applicable to both forced and autonomous 
oscillations. 

 

2. FORMULATION OF THE PROBLEM 

Our starting point is the nonlinear feedback system in the 
vector-matrix form: 
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Here f(t) is a periodic vector function with the period T. It 
may be identically equal to zero, but then there is a 
question of the existence of periodic solutions, which is 
outside of the scope of this paper. The function For the 
sake of simplicity, we consider the case of a SISO system, 
i.e. both the function , hereafter called the 
nonlinearity, and its argument 

)(σϕ
σ are scalar. The results can 

be easily extended to MIMO systems. 

We now proceed to the formulation of the results. 

 

3. STATEMENT OF THE RESULTS 

The main results of this paper follow almost directly from 
the earlier absolute stability results for systems with time 
periodic nonlinearities. For this reason they will be stated 
without proof.  Throughout the paper, we denote the 
transfer function of linear part of the system by W(s) and 
define it by the usual equation: 
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3.1 Analytic Criterion. 

The following result is an immediate consequence of the 
Theorem 3.2.5 from (Altshuller, 2004) and restated for 
sake of completeness in the Appendix. 

For the sake of brevity we introduce the following notation: 
For any function , the expression  
means that there exists a constant 
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Let be the output of the system (1-3) having a 

period T. Then for the output 
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)(ty φ= corresponding to 
any other solution of the system (1-3) 
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and there exists a constant λ , independent of the function 
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The general nature of this criterion makes difficult to use 
since it is not clear how to find the desired sequence . 
However, the left-hand side of the inequality (4) has a very 
convenient Zames-Falb multiplier form, which makes it 
possible to interpret this criterion geometrically as we 
proceed to do in the next subsection. 
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3.2 Geometric Interpretation. 

With a slight abuse of notation, we can rewrite the 
inequality (4) in the form: 
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Let us define the two functions: 
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Note that since , the function  is 
continuous for all values of 
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It is relatively easy to show (Lipatov, 1981) that for the 
type of systems under consideration the graph of the 
function consists of branches with asymptotes. The 
ends of the branches point either to (Such branches are 
called stalactites) or to (Such branches are called 
stalagmites). The inequality (4) holds if a function  
can be found such that its graph separates stalactites from 
the stalagmites. 
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This geometric interpretation has been used extensively for 
systems with stationary nonlinearities. For the time-
dependent case, the best known result is the Circle 
Criterion, for which . 0)( ≡Ψ ω

For the expression given by the Equation (5) we have: 
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This geometric interpretation of the analytic criterion is 
easier to use if the infinite series are replaced with finite 
sums. In the next section, several numerical examples will 
be given to illustrate the application of the criterion. 
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