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a  b  s  t  r  a  c  t

A novel  method  for reverse  design  of the  rectangular-groove  dielectric  surface-relief  grating
by  modal  method  is presented.  The  principle  of the  reverse  design  method  is  the  excitation
and  coupling  between  the  propagating  modes  in  grating.  When  the  modes  0 and  1 are
transmission  through  the  grating,  the  phase  difference  is  accumulated.  By  adjusting  the
cumulative phase  difference  between  the  modes  0 and  1, the  energy  can  be  reallocated
between  the  −  1st  and 0th  order  diffraction  light.  Thereby  the  diffraction  efficiency  of  the
grating  − 1st  and  0th  order  are  adjusted.  By  using  these  reverse  design  method,  we analyze
the  design  of  the  beam  splitter  and blazed  grating.  As an  example,  a − 1st transmitted  order
blazed  grating  has  been  designed  by  reverse  design  method.  The  comparative  results  have
shown  that  the  geometrical  parameters  of the  grating  calculated  by  modal  method  agree
well with  the  results  simulated  by  the  rigorous  couple-wave  analysis  (RCWA).

© 2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

In optics, a diffraction grating is an optical component with a periodic structure, which splits and diffracts light into
several beams travelling in different directions. The directions of these beams depend on the spacing of the grating and
the wavelength of the light so that the grating acts as the dispersive element. Because of this, gratings are commonly
used in monochromators and spectrometers. In the development of the past few decades, grating diffraction theory has
formed a relatively perfect theoretical system, which is divided into positive solution and inverse solution. The method of
the positive solution is need calculation the diffraction efficiency based on the physical and geometric parameters of the
grating. However, the inverse problem algorithm is reverse calculate the geometric parameters of the grating based on
its function. At present, the development of the positive solution of the grating is relatively perfect. The positive solution
includes scalar diffraction theory and vector diffraction theory. However, the development of the inverse solution for the
diffraction grating is relatively behind the positive solution. Inverse problem algorithm for the grating mainly include GS
method [1], genetic method [2], simulated annealing method [3], effective medium theory [4] and modal method [5]. The
former three methods use an iterative algorithm to find the optimal grating parameters. Also, they usually require a lot of
computation time to find the optimum grating parameters. In addition, the effective medium theory is a kind of method that
grating can be equivalent to a uniform dielectric film. Also, the thin-film optical method is used for calculation the diffraction
efficiency for the grating [6]. In particular, the effective medium theory is mainly applied to the sub-wavelength grating.
More specifically, in the case of dielectric transmission gratings with rectangular grooves, the modal method [7–10] has a
simple physical understanding with the interference taking place in the grating. Furthermore, the modal method can reduce
the difficult diffraction process to an easy and intelligible mechanism [11,12]. In this paper the modal method has applied to
reverse design the beam splitting grating and blazed grating with a rectangular-groove dielectric surface-relief grating. The
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Fig. 1. Geometry of the rectangular-groove dielectric surface-relief gratings.

method of rigorous couple-wave analysis [13,14] has used to verify the grating geometrical parameters designed by modal
method.

2. Modal method

The schematic of the rectangular-groove dielectric surface-relief grating structure is shown in Fig. 1, where � is the
grating period; � is the wavelength of the incident light; h and b is the depth and ridge widths of the grating; n1 (n1 = 1) and
n2 (n2 = 1.5) is the refractive index of the air and the fused-silica, respectively; f is the fill factor. Since it is assumed that the
grating profile is square, the fill factor is the ratio of opening to period. Here a plane wave incident on the surfaces of the
gratings with Littrow mounting ϕ by the following

ϕ = arcsin(�/2�)  (1)

From the field continuity conditions at the boundaries between the ridges and grooves of the grating, the eigenvalue equation
is [13]

cos ˛� = F(n2
eff) (2)

where F(n2
eff

) is the eigenvalue function. For the TE and TM polarization incident, it is

F(n2
eff) = cos(ˇb) cos(�g) − ˇ2 + �2

2ˇ�
sin(ˇb) sin(�g) (3)

and

F(n2
eff) = cos(ˇb) cos(�g) − n1ˇ2 + n2�2

2n1n2ˇ�
sin(ˇb) sin(�g) (4)

where � = k0sin �,  ̌ = k0

√
1 − n2

eff
, � = k0

√
1 − n2

eff
, k0 = 2�/�, neff is the effective indices for the discrete modes, g (g = � − b)

is the grating groove width. The eigenvalue function F(n2
eff

) depends on the ridge width, the period, and the refractive indices.

Here, the propagating modes with n2
eff
> 0 can propagate through the gratings. Those with n2

eff
< 0 are evanescent modes,

since their effective refractive index neff is imaginary. The left part of the eigenvalue equation represents the incidence
conditions, where cos(��)  = 1 is the case of normal incidence.

When the discrete mode excited only transmission modes 0 and 1 in grating, there will be only −1st and 0th order
diffraction. The coupling between the modes 0 and 1 is similar to that of the M-Z  interference, and the process is shown in
Fig. 1. When the transmission modes 0 and 1 excited in grating only, the grating period should satisfy [14]

�/2 < � < 3�/2n2 (5)

The relationship between effective refractive index and the eigenvalue function can be calculated by Eqs. (3) and (4) for
different grating parameters. The grating eigenvalue function F(n2

eff ) as a function of the effective refractive index for TE
and TM polarizations with f = 0.9, � = 850 nm,  and � = 600 nm (or 1.6 �m)  is shown in Fig. 2. The dotted line of cos (��) = −1
is the case of Littrow mounting incidence as shown in Fig. 2. The effective refractive index of the discrete mode is calculated
by the point that the intersection of the Littrow mounting line and the characteristic function curves. More specifically, the
intersection point is located on the right side of the vertical coordinate as the propagating modes, and the left side of the
coordinate is the evanescent modes.

As shown in Fig. 2, when � = 600 nm since the grating periods satisfying Eq. (5), there exist only two propagating modes
0 and 1 for the incident light of the TE and TM polarizations. When the grating period is 1.6 �m,  since the grating periods can
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