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a  b  s  t  r  a  c  t

For  practical  application,  it is of  importance  to provide  a precise  description  of the  far field
error  on  the  basis  of the source  error.  The  “relative  error  volume”,  instead  of  the  local  error,
of the  source  is  put  forward  to give  the maximum  error range  of the  far field  error.  In order
to  determine  the  off-center  source  error,  the  “critical  point”  of  the  far field  phase  error  is
obtained, dealt  with  and  raised.  Numerical  results  given  are  used  to  check  up this  method.  It
is indicated  that  the  “off-center  distance”  together  with  the  “relative  error  volume”  should
be used  in  describing  the  source  error  and  analyzing  the  far field  error,  and the  “critical
points”  is a useful  parameter  to analyze  the  source  error  for the inverse  problem.

© 2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

The radiation field is computed from the source distribution in numerous fields of optics. According to the source error,
estimating the far field error is of great importance [1–6]. For instance, with the assessment of the far field distribution of the
semiconductor laser [7,8], one can gain the boundary value from the theoretical analysis or measurement data. A great deal
of previous researches deal with the relationship between the far field and the source distribution according to the paraxial
theory [9–11], or beyond the paraxial approximation [12–15]. Zeng et al. took a novel measure to display the far field error
of the off-axis Gaussian wave [16].

On the basis of the asymptotic solutions to the Helmholtz equation [10], a further study of the relationship of the far field
error according to the source error is given. It is shown that the “off-center distance” should be used in analyzing the far
field errors and describing the source errors accurately. The source distribution can be represented by a relative simple even
function and an off-center error function. The “critical point” of the far field phase error is obtained, analyzed and discussed
to depict the far field phase errors. Therefore, it is very important and useful to study the relationship between the far field
and the source errors with the numerical results.
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Fig. 1. Coordinate system.

2. Far field distribution

In this study, our research is limited to monochromatic radiation. According to [17] the far field distribution is described
as
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, k = 2�/�, and us (x′, y′) is the distribution of the planar source.

The source function us (x′, y′) is equal to a product of two  functions, which depend only on one of the two abscissas (x’
or y’), i.e., us (x′, y′) = us (x′)us (y′) [11]. For convenience sake, we only discuss a two-dimensional case here, in other words,
the far field is on the plane y = 0. Therefore, Eq. (1) can be rewritten as
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As shown in Fig. 1, we define a rectangular coordinate system (x, y, z), whose origin locates on the plane of the source.
The source only radiates in the half-space, z > 0. First, we  study the case that the source plane is parallel with the observation
plane, and then define the spatial frequencies �,  �, ω as
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where r =
√
x2 + y2 + z2. For each point on the observation surface, a corresponding spatial frequency exists. Substituting

Eq. (3) into Eq. (2), we can obtain

E (x, 0, z) = iMF (�) exp (ikr) , (4)

where M = Az
�r2
, F (�) =

+∞∫
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us (x′) exp (−i2��x′)dx′.

3. Far field errors

To determine the effects of source error on far field distribution, we  only consider the relative errors. Suppose that
us = f1 (x′) and us0 = f1 (x′) +  f2 (x′ − b) are two planar sources as shown in Fig. 2 and their difference is not large, where b is
the off-center distance. According to Eq. (4), the two sources’ far field distributions could be written as

Es = iMF1 (�) exp (ikr) , (5)

Es0 = iM [F1 (�) + F2 (�) exp (−i2�b�)] exp (ikr) , (6)
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