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a  b  s  t  r  a  c  t

An  exterior  of a charged  particle  at  rest  can  be well  described  with  evanescent  fields.  In the
paper, an  electric  scalar  monopole  potential  and magnetic  scalar  dipole  potential  have  been
calculated  on  the base  of an  evanescent  scalar  monopole  field  and  evanescent  scalar  dipole
field. It  has  been  shown  that  in  a zero  frequency  limit  only  the evanescent  fields  surround
the  particle  at rest. A similar  situation  can  be achieved  by  approaching  the  radius  of  the
source to the zero.  In this  case,  the  charged  particle  at rest  can  be  viewed  as  a dynamic
object.

© 2017  Elsevier  GmbH.  All  rights  reserved.

1. Introduction

A spherical charged particle exterior can be well described with an evanescent spherical field around a spherical core.
A wave differential equation enables the calculation regarding the dynamic behavior of the particle [1]. If a wave number
is set to zero, the created static field around the sphere with a wave source in the center can be well described using a
Poisson’s differential equation. Approaching the zero frequency limit the evanescent waves take the dominant role while
the propagating waves disappear. This situation is of great interest due to a power law decay of the evanescent field in this
limit. A similar situation can be achieved by approaching the radius of the source to the zero. If the radius of the source is
sufficiently small, the evanescent waves prevail and the charged particle does not radiate.

Several studies describe moving free electrons which also carry exponentially decaying evanescent field. These studies
are mainly connected with the Čerenkov radiation [2,3] and Smith-Purcell radiation where the evanescent waves created
around a moving particle are studied [4,5]. The evanescent waves are nowadays extensively involved in high-resolution
microscopy techniques [6]. Even the amplification of the evanescent waves is described in the literature [7].

In this paper, the spherical evanescent waves around the charged particle at rest are described. In order to investigate
the spherical waves approaching the zero frequency limit, the monopole and dipole spherical sources are presented. The
corresponding fields are calculated using a multipole expansion including an angular spectrum representation technique.
Later both the electric scalar monopole potential and magnetic scalar dipole potential are calculated and related to the
evanescent fields of the monopole and dipole. In addition, the case of a small radius of the charged particle is investigated.

2. Spherical wave source

An inhomogeneous Helmholtz differential equation is derived from a wave equation with a Fourier transform [8]

(∇2 + k2)� (r,ω) = − f (r,ω). (1)
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In the equation k = ω/c is a wave number, c wave velocity, ω angular frequency, r vector of a space point and ∇2 Laplacian
operator. Furthermore, � = � (r, ω) denotes a spatial and frequency dependent wave function and f(r, ω) denotes a source
function. In the zero frequency limit, k approaches to the zero k → 0. Consequently when k = 0 the Helmholtz differential
equation transforms to the Poisson’s differential equation

∇2˚(r)k=0 = − C�(r). (2)

In this equation, the wave function is replaced by a scalar potential function ˚(r) and the source function with a charge
density function �(r) multiplied with a constant C.

The charge density function describes a charge distribution of the sphere. The formal solution of the Poisson’s equation
can be written in an integral form over the volume V’ and consequently a scalar potential is deduced, where vector r’ defines
a source position

˚(r)k=0 = C

4�

∫
1

|r − r′|�(r′)dV ′. (3)

The function under the integral 1/(4�|r − r′|) is called Green’s function. It is defined in a static case k = 0 as a multipole
expansion. For r > r′ this expansion is [8]

1
4�|r − r′| =

∞∑
l=0

l∑
m=−l

1
2l + 1

r′l

rl+1
Yml (�, �)Ym∗

l (�′, �′), r > r′. (4)

In the multipole expansion, the term Yn
l

(�, �) and its complex conjugate Yn∗
l

(�′, �′) are angular functions and represent
spherical harmonics where l and n are integers. The range of l is from the zero to infinity while n occupies an interval −l....,
0, .... + l. The spherical harmonics in spherical coordinates (r, �, �) have the following form [9]

Ynl (�, �) =
√

2l + 1
4�

√
(l − n)!
(l + n)!

Pnl (cos �)ein�. (5)

In this equation Pn
l

(cos �) denotes associated Legendre polynomials. Inserting multipole expansion (4) into the solution of
the Poisson’s equation (3) gives another expression of the scalar potential

˚(r, �, �)k=0 = C

∞∑
l=0

l∑
n=−l

1
2l + 1

Yn
l

(�, �)

rl+1

∫
�(r′)r′lYn∗l (�′, �′)dV ′. (6)

3. Evanescent spherical scalar monopole field

Let a wave vector k = (kx, ky, kz) be defined in a three-dimensional Cartesian coordinate system on the base of the wave

number k =
√
k2
x + k2

y + k2
z . A complete radial monopole spherical field of the outgoing waves can be expressed with [9–11]

G = eikr

r
. (7)

In the zero frequency limit, this equation reduces to Gk=0 = lim
k→0

(eikr/r)  = 1/r. In the limit, the evanescent spherical field

Gk=0
e of the monopole can be calculated. The calculation involves an angular spectrum representation [12] for an upper

hemisphere z ≥ 0. Lower hemisphere z < 0 can be calculated similarly [13]

Gk=0
e = 1

2�

∫ ∫
k2
x+k2

y≥0

1√
k2
x + k2

y

e
i(kxx+kyy)−

√
k2
x+k2

y zdkx dky = 1
r
, z ≥ 0. (8)

The propagating part Gk=0
p immediately follows from the expression Gk=0 = Gk=0

e + Gk=0
p [13]

Gk=0
p = 1

2�

∫ ∫
k2
x+k2

y≤0

1√
k2
x + k2

y

e
i(kxx+kyy)−

√
k2
x+k2

y zdkx dky = 0 , z ≥ 0. (9)

This means that the propagating field of the monopole vanishes in the zero frequency limit while the evanescent field of
the monopole has the power law decay and is equal the complete radial monopole field Gk=0

p = 0 ⇒ Gk=0 = Gk=0
e .

4. Evanescent spherical scalar dipole field

The partial derivative of the scalar monopole field G = eikr/r in z direction determines a dipole field [14–17]

Ġ = ∂G
∂z

= zeikr(ikr − 1)
r3

, (10)
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