Contents lists available at ScienceDirect

## Optik

journal homepage: www.elsevier.de/ijleo

## Nonparaxial propagation of a partially coherent Lorentz-Gauss beam

### Dajun Liu\*, Hongming Yin, Yaochuan Wang\*

Department of Physics, Dalian Maritime University, Dalian, 116026, China

#### ARTICLE INFO

Article history: Received 1 September 2017 Accepted 2 November 2017

*Keywords:* Rayleigh-Sommerfeld diffraction Partially coherent Lorentz-Gauss beam Intensity Degree of coherence

#### ABSTRACT

Based on the Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial propagation and far field propagation for a partially coherent Lorentz-Gauss beam in free space are derived. The results show that the far field propagation is in agreement with nonparaxial propagation as the propagation distance z increases. And the beam with smaller coherence length for nonparaxial propagation of partially coherent Lorentz-Gauss beam will spread faster in free space.

© 2017 Elsevier GmbH. All rights reserved.

#### 1. Introduction

With the development of the laser technology, laser beams have been applied to many instruments, and the propagation properties of laser beam have been widely investigated by many researchers [1–7]. And in the application of near field, the nonparaxial properties of laser beams have been studied, such as spirally polarized optical beam [8], elliptical Gaussian beam [9], radially polarized light beam [10], four-petal Gaussian beam [11], hollow Gaussian beam [12], partially coherent dark hollow beam [13], rotating Cosh-Gaussian beam [14], flat-topped vortex hollow beam [15,16], Gaussian optical vortex beam [17], partially coherent flat-topped beam [18], partially coherent four-petal Gaussian beam [19], Lorentz-Gauss beam [20,21], multi-Gaussian Schell-model beam[22,23] and partially coherent four-petal Gaussian beam [24]. However, new laser beams called Lorentz beams have been given to describe the propagation of laser diode, and the propagation properties of Lorentz and Lorentz-Gauss beam have been widely studied [25–30]. To the best of our knowledge, the nonparaxial propagation properties and far field propagation properties of a partially coherent Lorentz-Gauss beam in free space have not been illustrated in the past years. In order to investigate the near field propagation properties of a partially coherent Lorentz-Gauss beam in free space are studied by using the generalized Rayleigh-Sommmerfeld diffraction.

\* Corresponding authors. E-mail addresses: liudajun@dlmu.edu.cn (D. Liu), ycwang@dlmu.edu.cn (Y. Wang).

https://doi.org/10.1016/j.ijleo.2017.11.013 0030-4026/© 2017 Elsevier GmbH. All rights reserved.



Full length article





#### 2. Theory analysis

Based on the generalized Rayleigh-Sommerfeld diffraction integral equation, the propagation function of partially coherent beams propagating in free space at the receive plane z can be written as [13]:

$$W(\mathbf{r}_{1},\mathbf{r}_{2},z) = \left(\frac{z}{\lambda}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} d\mathbf{r}_{10} d\mathbf{r}_{20} W(\mathbf{r}_{10},\mathbf{r}_{20},0) \frac{\exp\left[ik(R_{2}-R_{1})\right]}{R_{1}^{2}R_{2}^{2}}$$
(1)

where  $\mathbf{r}_1 = (x_1, y_1)$  and  $\mathbf{r}_2 = (x_2, y_2)$  are the position vectors at the receiver plane z;  $\mathbf{r}_{10} = (x_{10}, y_{10})$  and  $\mathbf{r}_{20} = (x_{20}, y_{20})$  are the position vectors at the source plane z = 0;  $W(\mathbf{r}_1, \mathbf{r}_2, z)$  and  $W(\mathbf{r}_{10}, \mathbf{r}_{20}, 0)$  are the cross spectral density function of partially coherent beam at the receiver plane z and source plane z = 0;  $k = 2\pi/\lambda$  is the wave number with  $\lambda$  being wavelength.  $R_1$  and  $R_2$  of Eq. (1) are the distance between the source plane and receiver plane and can be expressed as:

$$R_1 = \sqrt{(x_1 - x_{10})^2 + (y_1 - y_{10})^2 + z^2}$$
(2a)

$$R_2 = \sqrt{(x_2 - x_{20})^2 + (y_2 - y_{20})^2 + z^2}$$
(2b)

. . . .

And, a partially coherent Lorentz-Gauss beam generated by a Schell-model source at the source plane z=0 can be expressed as [31]:

$$W(\mathbf{r}_{10}, \mathbf{r}_{20}, 0) = \frac{1}{w_{0x}w_{0y} \left[1 + \left(\frac{x_{10}}{w_{0x}}\right)^2\right] \left[1 + \left(\frac{y_{10}}{w_{0y}}\right)^2\right]} \exp\left(-\frac{\mathbf{r}_2^{10}}{w_0^2}\right)$$

$$\times \frac{1}{w_{0x}w_{0y} \left[1 + \left(\frac{x_{20}}{w_{0x}}\right)^2\right] \left[1 + \left(\frac{y_{20}}{w_{0y}}\right)^2\right]} \exp\left(-\frac{\mathbf{r}_2^{20}}{w_0^2}\right)$$

$$\times \exp\left[-\frac{(x_{10} - x_{20})^2 + (y_{10} - y_{20})^2}{2\sigma^2}\right]$$
(3)

where  $w_0$  denotes the waist of the Gaussian part for partially coherent Lorentz-Gauss beam;  $w_{0x}$  and  $w_{0y}$  are the parameters related to beam widths of Lorentz part for partially coherent Lorentz-Gauss beam in x-axis and y-axis, respectively;  $\sigma$  are the transversal coherence length of partially coherent Lorentz-Gauss beam.

When the nonparaxial propagation properties of partially coherent beam are investigated, the  $R_1$  and  $R_2$  in Eq. (1) can be expanded as:

$$R_1 = r_1 + \frac{x_{10}^2 + y_{10}^2 - 2x_1 x_{10} - 2y_1 y_{10}}{2r_1}$$
(4a)

$$R_2 = r_2 + \frac{x_{20}^2 + y_{20}^2 - 2x_2x_{20} - 2y_2y_{20}}{2r_2}$$
(4b)

with

$$r_1 = \sqrt{x_1^2 + y_1^2 + z^2} \tag{5a}$$

$$r_2 = \sqrt{x_2^2 + y_2^2 + z^2} \tag{5b}$$

By considering the relationship of Lorentz function and Hermite-Gauss function in Eq. (3) of partially coherent Lorentz-Gauss beam [32]

$$\frac{1}{\left(x_{0}^{2}+w_{0x}^{2}\right)\left(y_{0}^{2}+w_{0y}^{2}\right)} = \frac{\pi}{2w_{0x}^{2}w_{0y}^{2}} \sum_{m=0}^{N} \sum_{n=0}^{N} a_{2m}a_{2n}H_{2m}\left(\frac{x_{0}}{w_{0x}}\right)H_{2n}\left(\frac{y_{0}}{w_{0y}}\right)$$

$$\times \exp\left(-\frac{x_{0}^{2}}{2w_{0x}^{2}} - \frac{y_{0}^{2}}{2w_{0y}^{2}}\right)$$
(6)

And recalling the following formulae [33]

$$\int_{-\infty}^{+\infty} x^n \exp\left(-px^2 + 2qx\right) dx = n! \exp\left(\frac{q^2}{p}\right) \left(\frac{q}{p}\right)^n \sqrt{\frac{\pi}{p}} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \frac{1}{k! (n-2k)!} \left(\frac{p}{4q^2}\right)^k \tag{7}$$

Download English Version:

# https://daneshyari.com/en/article/7225199

Download Persian Version:

https://daneshyari.com/article/7225199

Daneshyari.com