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a  b  s  t  r  a  c  t

By  using  the  sub-equation  method,  we  construct  the analytical  solutions  of  the  space-time
generalized  nonlinear  Schrödinger  equation  involving  the  beta-derivative.  This equation
describing  the propagation  of  ultra-short  optical  solitons  through  parabolic  law  medium.
Nonlinear  perturbations  of higher-order  and  self-steepening  terms  are  taken  into  account.
As a result,  some  new  exact  solutions  are  constructed  under  constraint  conditions.
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1. Introduction

Recently, many analytical and numerical methods have been proposed to obtain exact solutions of nonlinear partial
differential equations (NLPDEs) [1–14]. In the particular case of the sub-equation method [15], we have

[G′(�)]2 = q2G
2(�) + q3G

3(�) + q4G
4(�). (1)

Now we introduce the following transformation

G(�) = 1
g(�)

, (2)

substituting Eq. (2) into Eq. (1) leads to

[g′(�)]2 = q4 + q3g(�) + q2g
2(�). (3)

Derivating Eq. (3) once with respect to �, we get

g′′(�) = q3g(�) + q3

2
. (4)
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For Eq. (4) we have the following general solutions
(i)

g1(�) = c1 exp(
√
q2�) + c2 exp(−√

q2�) − q3

2q2
, (5)

where q2 > 0.
(ii)

g2(�) = c1 cos(
√

−q2�) + c2 sin(
√

−q2�) − q3

2q2
, (6)

where q2 < 0.
(iii)

g3(�) = q3

4
�2 + c1� + c2, (7)

where q2 = 0.
For all cases, q3, c1 and c2 are arbitrary constants. The general solutions of Eq. (1) are obtained substituting Eqs. (5)–(7)

into Eq. (2)
Case A:

G1(�) = 1

c1 exp(
√
q2�) + c2 exp(−√

q2�) − q3
2q2

, (8)

where q2 > 0, 4q4q2 + 16q2
2c1c2 = q2

3.
Case B:

G2(�) = 1

c1 cos(
√−q2�) + c2 sin(

√−q2�) − q3
2q2

, (9)

where q2 < 0, 4q4q2 + 4q2
2(c2

1 + c2
2) = q2

3.
Case C:

G3(�) = 1
q3
4 �

2 + c1� + c2
, (10)

where c2
1 = q3c2 + q4, when q2 = 0 in Eq. (1).

The nonlinear Schrödinger equations (NLSE) describing the propagation of optical pulse in nonlinear media [16–25]. The
exact solutions of these equations are important in optics, optical communication areas, propagation of optical pulses in
optical fibers, ultra-short optical solitons propagate in nonlinear medium, electromagnetism, plasma and fluids. Furthermore,
the exact solutions can be used to explain various phenomena in physics or other areas.

The concept of memory effect has long been a problem within the modeling community. Naturally, the classical models
are not appropriate to incorporate this memory [26–28]. Many researchers suggest that the memory effect could fully be
described via fractional derivatives [29–32]. In [33] Khalil presented a new definition of derivative called “conformable
derivative”, this derivative satisfied some conventional properties, for instance, the chain rule. Atangana in [34] investigated
some properties of this derivative, the authors proved related theorems and introduced new definitions. Interesting works
related with this operator are given by [35–39]. Recently Abdon Atangana in [40] proposed the “beta-derivative”. The version
proposed satisfies several properties that were as limitation for the fractional derivatives and has been used to model some
physical problems. These derivatives may  not be seen as fractional derivative but can be considered to be a natural extension
of the classical derivative [33].

The beta-derivative is defined as [40]

A
0D
˛
x {f (x)} = lim

�→0

f
(
x + �

(
x + 1

� (˛)

)1−˛) − f (x)

�
. (11)

Some properties for the proposed beta-derivative are [40]
(I) Assuming that, a and b are real numbers, g /= 0 and f are two functions ˇ-differentiable and  ̌ ∈ (0;1], we  have

A
0D
˛
x {af (x) + bg(x)} = aA0D

˛
x f (x) + bA0D

˛
x g(x). (12)

(II)

A
0D
˛
x {c} = 0, (13)

for c any given constant.
(III)

A
0D
˛
x {f (x) · g(x)} = g(x)A0D

˛
x {f (x)} + f (x)A0D

˛
x {g(x)}. (14)
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