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Abstract 

The use of constitutive equations calibrated from data collected from adequate testing has been implemented successfully into 
standard solvers for successfully addressing a variety of problems encountered in SBES (simulation based engineering sciences). 
However, the complexity remains constantly increasing due to the more and more fine models being considered as well as the use 
of engineered materials. Data-Driven simulation constitutes a potential change of paradigm in SBES. Standard simulation in 
classical mechanics is based on the use of two very different types of equations. The first one, of axiomatic character, is related to 
balance laws (momentum, mass, energy...), whereas the second one consists of models that scientists have extracted from 
collected, natural or synthetic data. Data-driven simulation consists of directly linking data to computers in order to perform 
numerical simulations. These simulations will use universal laws while minimizing the need of explicit, often phenomenological, 
models. This work revisits our former work on data-driven computational linear and nonlinear elasticity and the rationale is 
extended for addressing computational inelasticity (viscoelastoplasticity). 
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1. Introduction 

Big-data is becoming a key protagonist in our lives in many aspects, ranging from e-commerce to social sciences, 
mobile communications, healthcare, etc. However, very little has been done in the field of scientific computing, 
despite some very promising first attempts.  

Advanced clustering techniques, for instance, not only help engineers and analysts, they become crucial in many 
areas where models, approximation bases, parameters, etc. are adapted depending on the local state (in space and 
time senses) of the system [1,2]. Machine learning needs frequently to extract the manifold structure in which the 
solution of complex and coupled engineering problems is living. Thus, uncorrelated parameters can be efficiently 
extracted from the collected data, the last coming from numerical simulations or experiments. As soon as 
uncorrelated parameters are identified (constituting the information level), the solution of the problem can be 
predicted at new locations of the parametric space, by employing adequate interpolation schemes [3,4]. On a 
different setting, parametric solutions can be obtained within an adequate framework able to circumvent the curse of 
dimensionality for any value of the uncorrelated model parameters [5].  

This unprecedented possibility of directly determine knowledge from data or, in other words, to extract models 
from experiments in a automated way, is being followed with great interest in many fields of science and 
engineering. For instance, the possibility of fitting the data to a particular set of models has been explored recently in 
[6]. Closely related, Ortiz has developed a method that works without constitutive models, by finding iteratively the 
experimental data that best satisfies conservation laws [7]. In [8] authors followed a similar rationale extending the 
data-driven framework to nonlinear elasticity and inelasticity, where model-based simulations where replaced by 
data-driven simulations operating on a new kind of constitutive models defined directly from data. Thus, 
experiments become crucial because they are not only used for calibrating pre-assumed models (as it is the case in 
standard simulation approaches) but for driving directly simulations.  Its main drawback is the huge amount of data 
required for running simulations. In the present work we will assume that all the needed data is available. We will 
not address the way of collecting data from adequate experiments and the use of eventual inverse techniques to 
enrich the behavior description, issues that will be reported in incoming works. 

Usual model-based simulations proceeds by solving the equilibrium weak form defined in the domain Ω  with 
boundary Γ   

ε u∗( ) :σ  dx
Ω
∫ = u∗ ⋅ tg  dx

Γt
∫         (1) 

where  Γ = Γu ∪ Γ t  (  Γu ∩ Γ t =∅ ) representing portions of the domain boundary where, respectively, 
displacements  ug  (essential boundary conditions) and tractions  tg  (natural boundary conditions) are enforced. In 

Eq. (1) u∗  represents an arbitrary displacement field kinematically admissible (regular enough and satisfying the 
essential boundary conditions). In order to solve (1) a relationship linking kinematic and dynamic variables is 
required, the so-called constitutive equation. The simplest one, giving rise to linear elasticity, is known as Hooke's 
law (even if, more than a law, it is simply a model), and writes 

σ = λTr(ε)I + µε     (2) 

where Tr(•) denotes the trace operator, and λ  and µ  the two elastic coefficients. By introducing the constitutive 
model, Eq. (2), into Eq. (1), a problem is obtained that can be formulated entirely in terms of the displacement field 
u(x) . By discretizing it, using for instance the standard finite element method, after performing numerically the 
integrals involved in Eq. (1), we finally obtain a linear algebraic system of equations, from which the nodal 
displacements can be obtained. 

The biggest challenge could then be formulated as follows: can simulation proceed directly from data by 
circumventing the necessity of establishing a mathematical expression of the constitutive model?  
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In [8] authors explored different possibilities in the context of nonlinear elasticity, the less intrusive from the 
point of view of its implementation in standard simulation software, being the local calculation of a secant or tangent 
elasticity matrix. Another approach based on the direct use of data proceeds from a mixed formulation involving the 
two main fields, the strain ε  and the stress σ  fields respectively, as was successfully proposed in the LaTIn 
method [9]. The solution strategy consists of iterating between two manifolds, the first one related to couples (ε,σ ) 
verifying equilibrium, while the second one is related to couples ( ε̂,σ̂ ) verifying the material behavior.  

If we assume that, at iteration n, the couple ( ε n ,σ n ) verifies the equilibrium, and that it does not belong to the 
constitutive manifold, a new couple ( ε̂,σ̂ ) is sought by considering an appropriate search direction. In fact the 
searched couple is no more that the intersection of the search direction with the constitutive manifold. The just 
updated stress-strain couple belongs to the constitutive manifold, but it does not verify equilibrium. Thus, a new 
equilibrated solution ( ε n+1,σ n+1 ) is searched from the former one, being the intersection of a new search direction 
and the equilibrium manifold. The iteration process continues until reaching the problem solution at the intersection 
of both manifolds. Both steps are summarized below: 

• Local step. At each integration point xg ,  g = 1,…,G , we consider ε n (xg ),σ
n (xg )( )  and look for 

ε̂(xg ),σ̂ (xg )( ) . Even if there are infinite possible search directions, in [8] we considered the simple projection 

of it onto the constitutive manifold. 
 

• Global step. From the strain-stress couples satisfying the constitutive law at every integration point, we come 
back to the weak form, Eq. (1), in order to obtain updated strain-stress couples satisfying equilibrium 

ε n+1(x),σ n+1(x)( ) , x ∈Ω .  The generic search direction can be written as 

σ n+1(x) − σ̂ (x) = D ε n+1(x) − ε̂(x)( )        (3) 

with D  a symmetric positive-definite matrix to ensure the problem ellipticity. Enforcing now the equilibrium, it 
results: 

ε∗(x)
Ω
∫ : D ε n+1(x) − ε̂(x)( ) + σ̂ (x)⎡⎣ ⎤⎦  dx = u∗ ⋅ tg  dx

Γt
∫          (4) 

2. Data-Driven Inelasticity 

2.1. Non-isothermal elasto-visco-plastic behavior 

In the context of continuum-thermodynamics it is assumed that the state of the system can be defined at each time 
by a set of variables know as state-variables, some of them observable, like the total strain ε , and other internal like 
the elastic ε e  and inelastic ε p strain components (in what follows we assumed an additive decomposition, i.e. 
ε = ε e + ε p ), as well as the variables describing the isotropic and kinematic hardening, the scalar p  and the tensor  

α  respectively. It is assumed the existence of a free energy depending on the state variables ρΨ(ε e, p,α;T ) , 
whose derivative allows defining the state-laws and the associated variables, the stress σ  and both, the isotropic R  
and kinematic X  hardening: 
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