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Abstract

We consider an algorithm for construction of thick prismatic mesh layers which works as follows. A triangular surface mesh is
specified as input. Then, thin initial layer of highly compressed hyperelastic material glued to the surface is constructed using
robust algorithm for computation of discrete normals. This pre-stressed material expands, possibly with self-penetration and
extrusion to exterior of computational domain. Special preconditioned relaxation procedure is proposed based on the solution
of stationary springback problem. It is shown that preconditioner can handle very stiff problems related to construction of very
thick one-cell-wide layers for rather fine surface meshes. Once an offset prismatic mesh is constructed self-intersections are then
eliminated using iterative prism cutting procedure. Next, variational advancing front procedure is applied for refinement and precise
orthogonalization of prismatic layer near boundaries. It is guaranteed that the resulting mesh is free from inverted prisms.
c� 2017 The Authors. Published by Elsevier Ltd.
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Introduction1

High quality simulation of viscous flows imposes rather strict requirements on computational meshes near solid2

boundaries. It it very important to construct meshes which provide orthogonality near boundary and precise control3

over mesh element size in the direction orthogonal to boundary irrespectively of the size and shape of surface mesh4

elements. Variational methods make this precise control possible [1]. Prismatic mesh layers consisting of triangular5

prisms, hexahedra or general polygonal prisms are flexible enough to be incorporated into automatic mesh generators6

while providing high quality mesh near boundaries. We consider semi-structured layers with the same mesh connec-7

tivity on each sublayer. In literature, sometimes more general case is considered where topology changes are admitted8

for mesh quality improvement [2]. However, we do not consider this case. Prismatic mesh layer is considered to be9

“thick” when its transverse size is comparable to the characteristic size of the geometric model. One can also call10

prismatic layer thick when its height is considerably larger compared to mesh element size on the surface.11
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1. Variational principle for construction of prismatic layers12

Let ξ1, ξ2, ξ3 denote the Lagrangian coordinates associated with elastic material, and x1, x2, x3 denote the Eulerian13

coordinates of a material point. Spatial mapping x(ξ) : R3 → R3 defines a stationary elastic deformation. The14

Jacobian matrix of the mapping x(ξ) is denoted by C, where ci j = ∂xi/∂ξ j.15

We look for the elastic deformation x(ξ) that minimizes the following weighted stored energy functional [4]16

F(x) =
∫

Ωξ

w(ξ)W(C) dξ, (1)17

where W(C) is polyconvex elastic potential (internal energy) which is a weighted sum of shape destortion measure18

and volume distortion measure [8]:19

W(C) = (1 − θ)
(

1
3 tr(CT C)

)3/2

det C
+

1
2
θ(

1
det C

+ det C) (2)20

In most cases we set θ = 4/5.21

Since distortion measure (2) is minimized on the average, locally it can be quite large. In theory it can be infinite22

on the set of zero measure. In practice it means that with mesh refinement quality of mesh cell can locally deteriorate.23

In practice, one can control the spatial distribution of distortion measure without actual contraction of the set of24

feasible mappings. Experience suggests that large values of distortion appear near boundaries and surfaces of material25

discontinuity Hence it is possible to introduce a weight function w(·) in the Lagrangian or Eulerian coordinates which26

takes large values in critical regions and is close to unity elsewhere.27

In the process of minimization, elements with a larger weight tend to have a smaller value of distortion function28

W(C). Hence, their shapes and sizes are very close to the target ones. This simple approach proved to be very efficient29

for mesh orthogonalization near the boundary [8]. A proper choice of the weight allows us to satisfy the no-slip30

boundary conditions and to approximate boundary orthogonality conditions and prescribed mesh element size in the31

normal direction very accurately.32

Theoretical arguments suggest that in order to eliminate the local singularities of the distortion function the weight33

distribution should be singular. However, this singularity is only reached in the limit of mesh refinement and for any34

given finite mesh weight distribution is bounded. One cannot prove that resulting deformation is quasi-isometric as in35

[8], [4] but numerical evidences suggest independence of the global mesh distortion bounds from the mesh size.36

Suppose that domain Ωξ can be partitioned into convex polyhedra Uk. Then stored energy functional (1) can be37

approximated by the following semi-discrete functional:38

F(xh(ξ)) =
∑

k

∫

Uk

w(ξ)W(∇xh(ξ)) dξ (3)39

where xh(ξ) is continuous piecewise-smooth deformation.40

In order to approximate integral over a convex cell Uk one should use certain quadrature rules. As a result semi-41

discrete functional (3) is replaced by the discrete functional:42

F(xh(ξ)) ≈
∑

k

vol(Uk)
Nk∑

q=1

βqwqW(Cq) = Fh(xh(ξ))43

Here Nk is the number of quadrature nodes per cell Uk, Cq denotes the Jacobian matrix in q-th quadrature node of Uk,44

while βq are the quadrature weights and wq are values of weight function in the quadrature nodes.45

The following majorization property should hold46

F(xh(ξ)) ≤ Fh(xh(ξ)) (4)47

This property can be used to prove that all intermediate deformations xh(ξ) providing finite values of discrete func-48

tional are homeomorphisms [4].49
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Let Gξ(ξ) and Gx(x) denote the metric tensors defining linear elements and length of curves in Lagrangian and50

Eulerian coordinates in the domains Ωξ and Ωx, respectively. Then, x(ξ) is the mapping between metric manifolds Mξ51

and Mx. The distortion functional (1) for this mapping can be written as52

F(x) =
∫
Ωξ

w(ξ)W(Q∇ξxH−1) det Hd ξ, (5)53

where54

HT H = Gξ, det H > 0, QT Q = Gx, det Q > 055

are arbitrary matrix factorizations of metric tensors Gξ and Gx.56

The corresponding discrete functional can be written as follows57

Fh(xh(ξ)) =
∑

k

vol(Uk)
Nk∑

q=1

wqβqW(QqCqH−1
q )detHq58

Note, that in the presence of the control metrics exact majorization inequality can be violated and one should be59

careful with quadrature rules in order to guarantee certain relaxed formulation for majorization, say in the form60

F(xh(ξ)) ≤ CFh(xh(ξ)), (6)61

where C is a constant. This inequality should guarantee that every intermediate iteration of the mesh generation62

method has finite energy for mapping as a whole and not just for the finite set of quadrature nodes.63

Suppose that a thin layer of hyperelastic material is glued to the surface of the body. This material is highly64

compressed in the direction orthogonal to the surface. Now suppose that the surface of the layer opposite to the65

domain boundary is freed which results in classical springback problem for pre-stressed hyperelastic material. Static66

springback deformation can be found as a result of minimization of stored energy.67

Elastic material is modelled by the one-cell-wide layer P of triangular prisms. For each prism P ∈ P the target68

prism Pt from the known prismatic layer in certain parametric manifold is specified. In order to construct such a69

target prism we consider a triangle T which belongs to the oriented surface triangulation of the polyhedral surface70

S . We map this triangle isometrically onto the plane x3 = 0 in such a way that its normal is directed upwards and71

build on it rectangular triangular prism with the height H(T ) equal to the prescribed thickness of the layer. Consider72

piecewise-smooth deformation xh : Pt → P as a solution of minimization problem for (3) with free boundary. When73

equilibrium solution is attained the thickness of elastic material would approximate the prescribed one. Note that at74

the springback relaxation stage material self-contact is ignored hence global overlaps are allowed.75

Consider auxiliary prism Pε constructed on the same triangular base T with the vertices pi and pi+ενi, i = 1, . . . , 3.76

Here pi are vertices of T , ε is certain small constant and νi is the discrete unit normal to polyhedral surface S at the77

vertex pi. Elastic deformation xh : Pt → Pε is quite far from isometry since H(T ) generally is much larger compared78

to ε. The tensions inside elastic material would move free surface away from the body.79

Springback computation under strong compression is rather difficult. Hence we use the set of successive target80

states in order to relax the stiffness of the problem. The sequence of target prisms defining deformations xh : Ph
t → Ph

81

is constructed via gradual enlargement of the target height h from ε to H(T ).82

Initial height ε is chosen in such a way that prismatic layer Pε is admissible. If for a small ε the layer still contains83

inverted prisms then preliminary untangling problem is solved using technique from [4].84
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Fig. 1: (a) initial thin prism with h = ε, (b)-(d) height enlargement for target prisms, (e), (f) real prisms after springback
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