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Abstract

We consider an algorithm for construction of thick prismatic mesh layers which works as follows. A triangular surface mesh is
specified as input. Then, thin initial layer of highly compressed hyperelastic material glued to the surface is constructed using
robust algorithm for computation of discrete normals. This pre-stressed material expands, possibly with self-penetration and
extrusion to exterior of computational domain. Special preconditioned relaxation procedure is proposed based on the solution
of stationary springback problem. It is shown that preconditioner can handle very stiff problems related to construction of very
thick one-cell-wide layers for rather fine surface meshes. Once an offset prismatic mesh is constructed self-intersections are then
eliminated using iterative prism cutting procedure. Next, variational advancing front procedure is applied for refinement and precise
orthogonalization of prismatic layer near boundaries. It is guaranteed that the resulting mesh is free from inverted prisms.
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Introduction

High quality simulation of viscous flows imposes rather strict requirements on computational meshes near solid
boundaries. It it very important to construct meshes which provide orthogonality near boundary and precise control
over mesh element size in the direction orthogonal to boundary irrespectively of the size and shape of surface mesh
elements. Variational methods make this precise control possible [1]. Prismatic mesh layers consisting of triangular
prisms, hexahedra or general polygonal prisms are flexible enough to be incorporated into automatic mesh generators
while providing high quality mesh near boundaries. We consider semi-structured layers with the same mesh connec-
tivity on each sublayer. In literature, sometimes more general case is considered where topology changes are admitted
for mesh quality improvement [2]. However, we do not consider this case. Prismatic mesh layer is considered to be
“thick” when its transverse size is comparable to the characteristic size of the geometric model. One can also call
prismatic layer thick when its height is considerably larger compared to mesh element size on the surface.
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1. Variational principle for construction of prismatic layers

Let &), &, &5 denote the Lagrangian coordinates associated with elastic material, and x1, x5, x3 denote the Eulerian
coordinates of a material point. Spatial mapping x(¢) : R? — R? defines a stationary elastic deformation. The
Jacobian matrix of the mapping x(¢) is denoted by C, where ¢;; = dx;/0¢;.

We look for the elastic deformation x(¢) that minimizes the following weighted stored energy functional [4]

Flx) = f WEOW(C) e, )
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where W(C) is polyconvex elastic potential (internal energy) which is a weighted sum of shape destortion measure
and volume distortion measure [8]:
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In most cases we set 8 = 4/5.

Since distortion measure (2) is minimized on the average, locally it can be quite large. In theory it can be infinite
on the set of zero measure. In practice it means that with mesh refinement quality of mesh cell can locally deteriorate.

In practice, one can control the spatial distribution of distortion measure without actual contraction of the set of
feasible mappings. Experience suggests that large values of distortion appear near boundaries and surfaces of material
discontinuity Hence it is possible to introduce a weight function w(:) in the Lagrangian or Eulerian coordinates which
takes large values in critical regions and is close to unity elsewhere.

In the process of minimization, elements with a larger weight tend to have a smaller value of distortion function
W(C). Hence, their shapes and sizes are very close to the target ones. This simple approach proved to be very efficient
for mesh orthogonalization near the boundary [8]. A proper choice of the weight allows us to satisfy the no-slip
boundary conditions and to approximate boundary orthogonality conditions and prescribed mesh element size in the
normal direction very accurately.

Theoretical arguments suggest that in order to eliminate the local singularities of the distortion function the weight
distribution should be singular. However, this singularity is only reached in the limit of mesh refinement and for any
given finite mesh weight distribution is bounded. One cannot prove that resulting deformation is quasi-isometric as in
[8], [4] but numerical evidences suggest independence of the global mesh distortion bounds from the mesh size.

Suppose that domain Q; can be partitioned into convex polyhedra Uj. Then stored energy functional (1) can be
approximated by the following semi-discrete functional:

W(C) = (1 -6)
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where x;,(£) is continuous piecewise-smooth deformation.
In order to approximate integral over a convex cell U, one should use certain quadrature rules. As a result semi-
discrete functional (3) is replaced by the discrete functional:
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Here N is the number of quadrature nodes per cell Uy, C, denotes the Jacobian matrix in g-th quadrature node of Uy,
while 8, are the quadrature weights and w, are values of weight function in the quadrature nodes.
The following majorization property should hold

F(xp(é)) < F"(x(6)) )

This property can be used to prove that all intermediate deformations x;,(¢) providing finite values of discrete func-
tional are homeomorphisms [4].
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