Author's Accepted Manuscript

A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins

Guangming Wen, Wenxia Dong, Bin Liu, Zhongping Li, Lifang Fan

www.elsevier.com/locate/bios

PII: S0956-5663(18)30408-1

DOI: https://doi.org/10.1016/j.bios.2018.05.054

Reference: BIOS10512

To appear in: Biosensors and Bioelectronic

Received date: 27 February 2018 Revised date: 26 May 2018 Accepted date: 28 May 2018

Cite this article as: Guangming Wen, Wenxia Dong, Bin Liu, Zhongping Li and Lifang Fan, A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins, *Biosensors and Bioelectronic*, https://doi.org/10.1016/j.bios.2018.05.054

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A novel nonenzymatic cascade amplification for ultrasensitive photoelectrochemical DNA sensing based on target driven to initiate cyclic assembly of hairpins

GuangmingWen, ** Wenxia Dong, *Bin Liu, *Zhongping Li, ** Lifang Fan*

^aSchool of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, People's Republic of China

^bInstitute of Molecular Science, Shanxi University, Taiyuan 030006, People's Republic of China

^cInstitute of Environmental Science, Shanxi University, Taiyuan 030006, People's Republic of China

* Corresponding author. E-mail address: wgm@sxu.edu.cn (G. Wen).

ABSTRACT: A novel cascade photoelectrochemical (PEC) signal amplification biosensing tactics was developed for DNA detection based on a target-driven DNA association to induce cyclic hairpin assembly. In the circulatory system there are two ssDNA (A and B) and two hairpins (C and D). The hybridization of these ssDNA led to the formation of an A-target-B structure. The close proximity of their toehold and branch-migration regions was able to induce the cyclic hairpin assembly. Afterwards, the assembly result further causes the separation of a double-stranded probe DNA (Q:F) to switch the PEC signal via toehold-mediated strand replacement. As such, the signal stranded DNA-CdS QDs (F) as the signal tag was released in the presence of the target DNA. The signal DNA-CdS QDs was then coated to F-doped tin oxide (FTO) electrode leading to the "signal-on" PEC signal. The designed biosensing strategy showed a low detection limit of 21.3 pM for target DNA and a broad linear range from 50 pM to 100 nM. This signal amplification PEC sensing method exhibited a potential application to detect protein molecules, RNA or metal ions via changing the sequence of A and B recognition.

Keywords: DNA assemble; photoelectrochemical; signal amplification; target driven; biosensing

Download English Version:

https://daneshyari.com/en/article/7228997

Download Persian Version:

https://daneshyari.com/article/7228997

Daneshyari.com