Author's Accepted Manuscript

A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain

Song Zhang, Yilin Song, Mixia Wang, Zhiming Zhang, Xinyi Fan, Xianteng Song, Ping Zhuang, Feng Yue, Piu Chan, Xinxia Cai

vavav eksvier com/locate/bios

PII: S0956-5663(16)30373-6

DOI: http://dx.doi.org/10.1016/j.bios.2016.04.087

Reference: BIOS8674

To appear in: Biosensors and Bioelectronic

Received date: 21 March 2016 Revised date: 22 April 2016 Accepted date: 26 April 2016

Cite this article as: Song Zhang, Yilin Song, Mixia Wang, Zhiming Zhang, Xiny Fan, Xianteng Song, Ping Zhuang, Feng Yue, Piu Chan and Xinxia Cai, A silico based implantable microelectrode array for electrophysiological and dopamin recording from cortex to striatum in the non-human primate brain, *Biosensor and Bioelectronic*, http://dx.doi.org/10.1016/j.bios.2016.04.087

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain

Song Zhang^{a,b}, Yilin Song^{a,b}, Mixia Wang^{a,b}, Zhiming Zhang^c, Xinyi Fan^{a,b}, Xianteng Song^{a,b}, Ping Zhuang^d, Feng Yue^d, Piu Chan^{d*}, Xinxia Cai^{a,b*}

USCHII

^aState Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Science, Beijing 100190, China.

^bUniversity of Chinese Academy of Sciences, Beijing 10090, China

^cUniversity of Kentucky Chandler Medical Center, Lexington, KY 40536-0098, USA

^dXuanwu Hospital, Capital Medical University, Beijing 100053, China

xxcai@mail.ie.ac.cn

pbchan90@gmail.com

*Corresponding:

Abstract

Dual-mode, multielectrode recordings have become routine in rodent neuroscience research and have recently been adapted to the non-human primate. However, robust and reliable application of acute, multielectrode recording methods in monkeys especially for deep brain nucleus research remains a challenge. In this paper, We described a low cost silicon based 16-site implantable microelectrode array (MEA) chip fabricated by standard lithography technology for in vivo test. The array was 25 mm long and designed to use in non-human primate models, for electrophysiological and electrochemical recording. We presented a detailed protocol for array fabrication, then showed that the device can record Spikes, LFPs and dopamine (DA) variation continuously from cortex to striatum in an esthetized monkey. Though our experiment, high-quality electrophysiological signals were obtained from the animal. Across any given microelectrode, spike amplitudes ranged from 70 to 300 μ V peak to peak, with a mean signal-to-noise ratio of better than 5:1. Calibration results showed the MEA probe had high sensitivity and good selectivity for DA. The DA concentration changed from 42.8 to 481.6 μ M when the MEA probe inserted from cortex into deep brain nucleus of striatum, which reflected the inhomogeneous distribution of DA in brains. Compared with existing methods allowing single mode (electrophysiology or electrochemistry) recording. This system is designed explicitly for dual-mode recording to meet the challenges of recording in non-human primates.

Download English Version:

https://daneshyari.com/en/article/7230257

Download Persian Version:

https://daneshyari.com/article/7230257

<u>Daneshyari.com</u>