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1 Introduction: the NASA-TLX
method

A very important topic for ergonomics and human
factors is measuring the mental workload associated
with the situations under study. For example, if one
is to compare two human-computer interfaces, the
device that produces a lower level of subjective mental
workload is generally preferred. Among the most
widely used methods are the National Aeronautics and
Space Administration-Task Load Index (NASA-TLX,
Hart and Staveland, 1988) and the Subjective Work-
load Assessment Technique (SWAT, Reid and Nygren,
1988). Contrary to the Cooper-Harper scale (Cooper
and Harper, 1969), where operators are asked a single
workload estimate, the NASA-TLX and SWAT both
assume that workload is a multidimensional concept,
with six and three workload sources respectively.
Supposedly, a multidimensional approach provides
a richer and less biased picture of workload. In
the general case, a multidimensional approach makes
difficult to directly compare various settings (work
situations, interfaces, and so on).

The NASA-TLX rating procedure provides an
overall workload score based on a weighted average
of the ratings on six subscales: Mental Demands,
Physical Demands, Temporal Demands, Performance,
Effort, and Frustration. Depending on situations,
the various sources may differently contribute to the
operator’s subjective workload. Taking into account
the relative weights of the sources first requires
obtaining a measure of their relative importance. For
example, during the standard NASA-TLX procedure
participants provide the 15 possible pair-wise com-
parisons of the six subscales. In each comparison,
subjects select the source that contributed to the

workload more than the other. Each source receives
one point for each comparison where it was deemed
to contribute more. The relative weight of a source
is then given by the sum of those points, divided
by 15 for normalization purposes. In order to avoid
confusion, in this paper we will call ”rating” the value
provided for each source, and ”weight” the relative
importance of a source. The ”score” will denote the
global score provided by an aggregation method.

After information about ratings and weights is
collected, the question is to choose the aggregation
method. The NASA-TLX makes use of a classical
weighted mean, which simply sums the products of
ratings by their normalized weights (Σwi = 1). Thus,
noting xi the rating about the ith source and ai the
relative importance of the same source, the subjective
workload SW in the NASA-TLX method is provided
by

SW =
6∑

i=1

wiai

where wi and ai respectively denote the weight and
rating associated with the ith workload source.

Although some previous studies applied fuzzy
sets theory to workload measurement by means of
linguistic terms (e.g., Chen, Jung, and Peacock, 1994;
Liou and Wang, 1994), another question is addressed
here: what is the best way of aggregating data about
the six NASA-TLX workload sources into a single
workload value that enables direct comparison of
different settings?

Is weighted average the best model of aggregation?
Indeed, it is easy to compute and familiar to most
researchers. On the other hand, despite its apparent
simplicity, the weighted average model is built upon
several strong mathematical assumptions that are not
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necessarily verified in workload assessment. For
example, it requires independence between ratings
and weights. This condition could be attained,
for example, by having operators providing the
ratings and external experts providing the weights.
Unfortunately, in the standard NASA-TLX procedure,
each operator provides both the ratings and weights.
Second, weighted average does not allow taking
into account interactions between sources. Is it
a reasonable choice to neglect dependencies and
interactions between sources of workload? By
neglecting such interaction effects, a weighted average
model might induce measurement biases.

As soon as a measure can be used as a
learning criterion, the Choquet integral provides a
potential solution to those problems because it enables
computing weights from an adjustment criterion in a
mathematically sound manner.

2 The Choquet integral for multi-
criteria decision making

(For a detailed presentation, see Grabisch, Duchêne,
Lino, and Perny, 2002; Grabisch, 2003; Grabisch and
Labreuche, 2004). We present here the necessary
material for introducing our model based on Choquet
integral. Let N = {1, . . . , n} be the index set of
criteria.

Definition 1 A capacity (Choquet, 1953) or fuzzy
measure (Sugeno, 1974) µ on N is a function µ :
P(N) −→ [0, 1], satisfying the following axioms.

(i) µ(∅) = 0.

(ii) A ⊆ B ⊆ N implies µ(A) ≤ µ(B).

We will assume in addition µ(N) = 1 (normalized
capacity). For any A ⊆ N , µ(A) represents the
importance of the coalition A of criteria for making
decision. The capacity is additive if it is a probability
measure.

Definition 2 Let µ be a capacity on N . The Choquet
integral of a function f : N −→ R+ with respect to µ
is defined by

Cµ(f) :=
n∑

i=1

(f(i) − f(i−1))µ(A(i)), (1)

where we have written for simplicity fi := f(i),
and ·(i) indicates that the indices have been permuted
so that 0 ≤ f(1) ≤ · · · ≤ f(n), and A(i) :=
{(i), . . . , (n)}, and f(0) = 0.

The Choquet integral of f , considered as an alternative
to be evaluated, is the overall score of the alternative
considering the importance of coalitions of criteria.
An important property of the Choquet integral is that

Cµ(1A) = µ(A)

where 1A is the characteristic function of A, A ⊆ N .
This gives a clear interpretation of the quantity µ(A).
Another property worth to be mentionned is that when
µ is additive, then the Choquet integral reduces to a
weighted average

∑
i wifi, with wi = µ({i}).

Since the definition of µ involves 2n values, which
may cause some interpretation problem in terms of
the importance of criteria, a convenient concept is the
one of Shapley index (Shapley, 1953), coming from
cooperative game theory. For any criterion i ∈ N , the
Shapley index of i is defined by:

φi :=
∑

K⊂N\i

(n− |K| − 1)!|K|!
n!

[µ(K∪{i})−µ(K)].

(2)
Roughly speaking, the Shapley index φi computes the
average contribution of criterion i in all coalitions, the
average being weighted by a coefficient taking into
account the cardinality of the coalition. In this sense,
it can be taken as definition of the average importance
or average contribution of a single criterion for
the decision process. The Shapley index satisfies∑n

i=1 φi = µ(N) = 1, so that the sum of importance
degrees is a constant. The idea to use the Shapley
index for multicriteria decision making is due to
Murofushi (1992).

Another important topic is the notion of interaction
among two criteria, as proposed originally by Muro-
fushi and Soneda (1993).

Iij :=
∑

K⊂N\{i,j}

(n− |K| − 2)!|K|!
(n− 1)!

[µ(K∪{i, j})

− µ(K ∪ {i})− µ(K ∪ {j}) + µ(K)]. (3)

A positive interaction Iij occurs whenever criteria i, j
are complementary, i.e., the satisfaction of both is
necessary to get overall satisfaction (the score of i and
j are aggregated conjunctively). On the contrary, if
it is sufficient to satisfy only i or j, then i and j are
substitutive, and Iij < 0 (the score of i and j are
aggregated disjunctively).

Later, Grabisch has generalized this notion to any
number of criteria, leading to the following definition
of the interaction index (Grabisch, 1997), defined for
all coalitions (including the empty one), which is,
∀A ⊆ N :

I(A) :=
∑

K⊂N\A

(n− k − a)!k!
(n− a + 1)!

∑
B⊂A

(−1)|A|−|B|µ(K∪B),

(4)
where k := |K| and a := |A|. Note that I({i}) = φi,
and I({i, j}) = Iij . Also, it is easy to show that for
an additive measure, I(A) = 0 whenever |A| > 1, and
φi = µ({i}). It is interesting to note that giving I(A)
for all A ⊆ N allows for recovery of the capacity µ: I
is merely another representation of µ (for details, see
Grabisch, 1997).

Definition 3 A capacity µ is said to be k-additive if
its interaction transform satisfies I(A) = 0 for any A
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