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a b s t r a c t

Oriented antibodies are tethered on the gold surface of a quartz crystal microbalance through the
photonics immobilization technique so that limit of detection as low as 50 nM and 140 nM are achieved
for parathion and patulin, respectively. To make these small analytes detectable by the microbalance,
they have been weighed down through a “sandwich protocol” with a second antibody. The specificity
against the parathion has been tested by checking the immunosensor response to a mixture of
compounds similar to parathion, whereas the specificity against the patulin has been tested with a real
sample from apple puree. In both cases, the results are more than satisfactory suggesting interesting
outlook for the proposed device.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The effective detection of small molecular weights analytes is
of paramount importance in a wide range of scientific topics like
investigating the molecular recognition phenomena and sensing of
toxic molecules (Cooper and Singleton, 2007; Geschwindner et al.,
2012; Jones et al., 2013; Vashist and Vashist, 2011). In particular, in
the field of environmental monitoring it would be of great
importance the availability of cost-effective and sensitive tools
allowing the detection of low soluble and harmful compounds like
steroids, herbicides, pesticides, toxins and combustion products
like polycyclic aromatic hydrocarbon (PAH). As case studies to test
our approach, we focused on parathion (IUPAC name O,O-diethyl
O-4-nitrophenil phosphorothioate, MW¼297 Da) and patulin (IU-
PAC name 4-hydroxy-4,6-dihydrofuro[3,2-c]pyran-2-one, MW¼
154 Da), which share a relatively low molecular weight and high
interest for environment and health safety. Parathion is an
organophosphate pesticide widely used to enhance agricultural
production, but for its toxicity (Milles and Salt, 1950) it is now
forbidden within the European Union which sets the limits of
pesticide residues in food between 50 and 100 μg/kg (Commission
Regulation (EC) no. 839/2008). Patulin is an example of mycotoxin
which is most likely to be found in crops as a result of fungal

infection. Both molecules are highly resistant to degradation and
the patulin high toxicity for human and animal health has been
recently pointed out in a review by Puel et al. (2010). Patulin level
in food is strictly regulated in European countries (Commission
Regulation (EC) no. 1881/2006) which set a maximum level of
50 μg/kg for fruit juices and derived products, 25 μg/kg for solid
apple products and 10 μg/kg for baby foods. Both parathion and
patulin are usually quantified by exploiting expensive, time con-
suming and relatively complex techniques like high-performance-
liquid-chromatography (HPLC) and/or mass spectrometry [see
(Blasco et al., 2004; Carabias Martinez et al., 1992; Kwakman
et al., 1992) for parathion and (Berthiller et al., 2014; Pereira et al.,
2014) for patulin]. Thus, the lack of any commercial and standard
immunochemical methods underpins the research for biosensor
based detection allowing in situ and real-time analysis for envir-
onmental monitoring and food quality control.

Amperometric devices are used for parathion in view of their
feature to provide cheap, rapid and effective analysis of aqueous
samples if the molecules to be detected are electroactive. Zen et al.
(1999) developed a sensitive technique for the detection of
parathion using a Nafion-coated glassycarbon electrode thus
reaching a limit of detection (LOD) of 50 nM. Other sensing
strategies are based on electrodes functionalized using enzymes
like organophosphorus hydrolase. Exploiting this principle
Mulchandani et al. (2001) were able to detect methyl-parathion
and paraoxon with a LOD of 20 nM. Even if this kind of devices
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offers several advantages for water analysis, electrochemical
detection can be easily influenced by other oxidizable molecules
eventually present in a real sample.

Electrochemical (Vidal et al., 2013), optical (Pereira et al., 2014)
and piezoelectric (Pohanka et al., 2007; Prieto-Simón and Campàs,
2009), sensors and biosensors for the detection of mycotoxins are
reported in literature, but quite few results are reported for patulin
detection. A fluorescence assay was proposed by De Champdoré
et al. (2007) with a LOD of 10 μg/L (less than 0.1 μM), but no test
on a real sample was carried out. Damián Chanique et al. (2013)
have developed a detection method based on the electrochemical
reduction of patulin using glassy carbon electrodes. With this
strategy they reached a LOD of 300 nM quantifying patulin in
commercial apple juices. Starodub and Slishek (2012) proposed a
nano-porosus silicon based immunosensor for measuring the level
of patulin and T2 mycotoxin in real samples reaching a sensitivity
of about 10 ng/mL for both pollutants. More recently, Pennacchio
et al. (2014) proposed a competitive surface plasmon resonance
(SPR) based bioassay with an estimated LOD of 0.1 nM, but it is
worth noticing that the accuracy of SPR measurements can be
influenced by interfering effects like temperature and sample
composition fluctuation which produce a change in the refractive
index not related to the analyte binding.

In view of their robustness, flexibility and cost-effectiveness,
quartz crystal microbalance (QCM) technology has achieved an
important role in fields like sensing, material science, environ-
mental monitoring and protein studying (Vashist and Vashist,
2011). It is possible use QCM devices for small molecule detection
exploiting several principles and configurations (Cooper and
Singleton, 2007). All these advantages led to a wide range of
publications involving QCM based detection of both pesticides and
mycotoxins. For instance, Bi and Yang (2009) used molecular
imprinted monolayers (MIMs) self-assembled onto the QCM gold
electrode to effectively detect imidacloprid and thiacloprid pesti-
cides in celery juice. They used an extremely sensitive QCM device
getting a LOD of 1 μM. Concerning mycotoxin detection an indirect
competitive immunological strategy has been adopted by Jin et al.
(2009) for the quantification of aflatoxin B1. They significantly
improved the sensitivity of the QCM based biosensor coupling the
indirect competitive immunoassay with biocatalyzed deposition
amplification using enzyme labeled secondary antibodies. Horse-
radish peroxidase was used to catalyze the oxidation of 4-chloro-
1-naphthol to form an insoluble product which deposits onto the
QCM electrode thus resulting in a huge increase in the sensor
response. This procedure requires several time consuming incuba-
tion steps and allows to reach a LOD of about 32 pM.

Surface functionalization is one the main issue in biosensor
development, in fact, recent publications show the strong interest
in the research of innovative immobilization and functionalization
strategies which provide better sensitivity and lower LOD (Jung
et al., 2008; Nicu and Leic̈hle ́, 2008). In particular, protein
orientation is of paramount importance for immobilized antibo-
dies which have to well expose their sensitive parts, the so called
antigen binding sites, to effectively capture the antigens. Trilling
et al. (2013) have recently investigated the relationship between
analyte characteristics and capture molecule anchoring showing
that the uniform orientation of the recognition elements provides
a huge systematic improvement in sensitivity for weak interac-
tions. They observed that the smaller the molecule, the lower the
epitope number per analyte and, hence, the more important is the
orientation of the sensitive biomolecule. By an appropriate anti-
body surface functionalization, Funari et al. (2013) were able to use
a simple transducer like quartz-crystal microbalance (QCM) to
detect a concentration of about 200 nM of parathion. This result
was achieved by adopting the photonic immobilization technique
(PIT) (Della Ventura et al., 2011), so that a gold surface fully

covered by oriented antibodies was realized, but also by “weighing
down” the molecule through the complexion of parathion with
bovine serum albumin (BSA). Since not all the molecules are able
to complex with BSA, in this paper we propose a more general
approach leading to higher sensitivity and specificity. Essentially,
parathion and patulin are “weighed down” by the same antibodies
used for the detection onto QCM, mimicking the so called
sandwich configuration widely used in the ELISA assays. To this
end, the pollutant sample is mixed with an antibody solution
before the latter is conveyed to the QCM and LODs of approxi-
mately 50 nM and 140 nM are achieved for parathion and patulin,
respectively.

2. Materials and methods

2.1. Chemicals

Parathion (45607) and patulin (P1639) were purchased from
Sigma-Aldrich. Anti-parathion (ABIN113883) and anti-patulin
(AS11-1699) polyclonal antibodies were purchased as rabbit sera
from antibodies-online.com and Agrisera respectively. The type G
immunoglobulins were purified using the Protein A Antibody
Purification Kit (PURE1A) from Sigma-Aldrich. 5,5′-dithiobis-(2-
nitrobenzoic acid) also known as Ellman's reagent (D8130), bovine
serum albumin (A2153) and the compounds used for the specifi-
city tests, bisphenol A (239658), p-nonylphenol (46018), dichlor-
vos (45441), diazinon (45428) and paraoxon (36186), were from
Sigma-Aldrich. The pollutant samples were prepared using PBS
1� buffer solution in the fume hood. Helix water, sulfuric acid
98% and hydrogen peroxide 40% were used for the cleaning
procedure of the QCM gold surfaces.

2.2. Patulin extraction from real sample

For the specificity test, we used real samples of patulin
extracted from apple puree obtained from apple processing plant.
To this end a commercial kit (Polyintell Affinimips SPE cartridges)
was used. The extraction was performed as follows: 10 g of apple
puree were treated with 150 μL of a pectinase enzyme solution
followed by 10 mL water and mixed. Solution was left at room
temperature overnight, or for 2 h at 40 °C, centrifuged at 4500g for
5 min and then filtered with a 0.2 μM filter. This solution is used as
the loading solution. SPE Cartridge was conditioned with 2 mL of
acetonitrile (ACN), then with 1 mL of deionised water. 5 mL of the
loading solution was put in the cartridge, which was subsequently
washed with 4 mL of deionized water containing 1% of acetic acid.
Water was forced down into the cartridge. The cartridge was
treated with 1 mL of CHCl3 and patulin was eluted with 2 mL of
ACN containing 1% acetic acid. The SPE procedure lasted approxi-
mately 30 min. The elution fraction was then evaporated and
dissolved in water containing 0.1% acetic acid. This fraction was
submitted to a Perkin Elmer HPLC with UV detector to determine
the patulin concentration. The same sample was used in QCM
validation analysis.

2.3. UV laser source

The immunoglobulin samples were irradiated using the UV
laser pulses provided by a custom femtosecond PHAROS laser
system with high tunable pulse repetition rate coupled with a
harmonic generator stage (HIRO) which allows the conversion to
515 nm, 343 nm and 258 nm wavelengths of the IR fundamental
radiation. Both PHAROS and HIRO were from Light Conversion Ltd.
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