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Abstract: Glucose minimal model parameters are commonly estimated by applying 
weighted nonlinear least squares separately to each subject’s data. Because of the model’s 
nonlinearity. the parameter precision of the single-compartment minimal model is not 
always satisfactory, especially in presence of a reduced sampling schedule. In the current 
work, the use of population analysis through nonlinear mixed effects models is evaluated 
and its performance tested against the parameter estimates obtained by the standard 
individual approach through weighted nonlinear least squares.  Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
The single-compartment minimal model method 
(Bergman, et al., 1979) is widely used in clinical and 
epidemiological studies to estimate metabolic 
indexes of glucose effectiveness (SG) and insulin 
sensitivity (SI) from an intravenous glucose tolerance 
test (IVGTT). Use of the minimal model for SG and 
SI determination requires the injection of a glucose 
bolus at time 0, and subsequently sampling for 3 or 4 
hr. As typical in physiological and metabolic 
modeling, minimal model parameters are commonly 
estimated by applying weighted nonlinear least 
squares separately in each subject. After having 
obtained individual estimates for each subject, the 
sample mean and the variance of all the model 
parameter estimates are calculated and assumed to 
approximate the first- and the second-order moment 
(expected value and variance) of the subject 
population distribution. However, due to its 
complexity, the parameter precision of the single-
compartment minimal model is not always 
satisfactory, especially in presence of a reduced 
sampling schedule (“data poor” situation). Of note is 
that a reduced sampling scheme is highly desirable, 
both for ethical and practical reasons, above all when 
clinical trials are performed in a large number of 
subjects: a reduced sampling scheme allows to 
minimize experimental invasiveness.  

To derive accurate and precise individual estimates 
and, consequently, description of the subject 
population also in presence of a data poor situation, 
maximum a posteriori Bayesian estimation has been 
evaluated (Sparacino, et al., 2000). The drawback of 
this estimation method is that it requires some 
independent a priori statistical (i.e., mean, variance, 
covariance) knowledge on the model parameters. 
This drawback can potentially heavily compromise 
the parameter estimation process, when a priori 
information is unavailable or poor quality. However, 
other estimation approaches focused on ensembles of 
individuals, like population kinetic analysis through 
mixed effects models (Beal and Sheiner, 1982), have 
only recently been applied in this context (De 
Gaetano, et al., 1996) and have still to be thoroughly 
evaluated.  
Population analysis aims at quantitative assessment 
of model parameters, taking advantage of the entire 
collection of measures obtained from a population of 
individuals. Population analysis directly estimates 
statistical features of the data set, and finds its natural 
application in quantification of data poor studies, e.g. 
when the number of samples available for each 
individual subject is rather small in comparison with 
model complexity. It is widely used in the analysis of 
pharmacokinetic studies. Among all available kinetic 
data analysis methods, population approaches using 
nonlinear mixed effects models have become an 
increasingly important tool, since they not only allow 



     

one to quantify both population and individual 
parameters, but also to identify the biological sources 
of between- and within-subject variability.  
In this work, we will describe the use of population 
analysis through nonlinear mixed effects model to 
identify single-compartment minimal model 
parameters in a population of subjects composed of 
healthy and young adults. The performance of the 
population approach will be tested against the 
parameter estimates obtained by the standard 
individual approach, where each subject is analyzed 
individually by weighted nonlinear least squares. 
While others have looked at applications of nonlinear 
mixed effects to minimal modeling in a simulation 
context (Erichsen, et al., 2004), we have chosen a 
“data rich” situation for this evaluation. By 
comparison with the standard estimates, we will 
evaluate the most common parametric nonlinear 
mixed effects modeling approaches. By selecting the 
one performing best, we will have developed an 
important estimation tool for handling of sparse 
sampling protocols used in physiological and 
metabolic modeling.  
 
 

2. MATERIALS AND METHODS 
 
 
2.1 Subjects 
 
Standard IVGTT [dose 330 mg/kg] studies were 
performed on 58 nondiabetic young subjects (mean 
age 23±3 and mean BMI 24.5±2.9 kg/m2) in the 
Clinical Research Center at the Mayo Clinic, 
Rochester, MN, USA. Subjects received the glucose 
bolus at time 0,. Blood samples were collected at -
120, -30, -20, -10, 0, 2, 4, 6, 8, 10, 15, 20, 22, 25, 26, 
28, 31, 35, 45, 60, 75, 90, 120, 180, and 240 min for 
measurement of glucose and insulin concentrations.  
 
 
2.2 The Minimal Model 
 
The classic one-compartment minimal model 
(Bergman, et al., 1979) can be described by: 
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where D is the glucose dose, Q(t) (mg/kg) is glucose 
mass in plasma with bQ  denoting its basal value, 
G(t) (mg/dl) is plasma glucose concentration, I(t) 
(μU/ml) is insulin concentration, bG  and bI  are their 
basal values, and X(t) is insulin action (min-1). The 
model has four uniquely identifiable parameters: GS  
(min-1), glucose effectiveness, IS  (min-1 μU-1 ml), 
insulin sensitivity, p2 (min-1), the insulin action 
parameter, and V (dl/kg), the glucose distribution 
volume per unit of body mass. The model parameters 
are estimated by assuming I(t) as a known input 
(forcing) function. 
 
 

2.3 The Individual  Standard Estimation Approach 
 
We used weighted nonlinear least squares as 
implemented in SAAM II (Barrett, et al., 1998). 
Assuming that the observed data are statistically 
related to the individual true parameters pj through 
the measurement equation: )t()t,(G)t(G ijijij ε+= p ; 
the cost function to be minimized is: 
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where N is the number of glucose samples, )t(G ij  is 
the ith time point for the jth of M subjects, 2

j,iσ  is the 
variance of the measurement error of the ith data 
point, and )t,(G ijp  is the minimal model prediction 
of glucose concentration. Measurement error was 
assumed to be additive, uncorrelated, Gaussian, zero 
mean, and with a standard deviation given by: 
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After obtaining all the individual estimates, we 
calculated for each parameter, the sample mean of all 
the individual parameter estimates and the 
corresponding sample covariance.  
 
 
2.4 Population Analysis: the Nonlinear Mixed-
Effects Model Approach 
 
Unlike the estimation approach discussed above, a 
more elaborate statistical model is required by the 
nonlinear mixed-effects model approach. In 
particular, the observed data are again supposed to be 
related to the individual true parameters pj thought 
Eq. 3, but, in addition, it is assumed that the 
individual parameters pj are characterized by some 
attributes that do not change across the population of 
M subjects (fixed effects, i.e. values that are common 
to all subjects) and some others that do (random 
effects, i.e. values typical of a specific subject). 
Mathematically, this can be written as: 
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where d is a known function that describes the 
expected value of pj as a function of the fixed effects, 
θ, and the random effects, ηi. More specifically, the 
individual parameter can be written as: 
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with aj being known individual specific covariates 
such as weight, age, body mass index, etc.  
Parametric mixed-effects modeling requires to 
postulate at least some characteristics of the 
population probability distribution for the random 
effects (e.g. whether it is Gaussian or lognormal). We 
assume the random effects to be independent, with: 
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