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Abstract: Hyperglycaemia is prevalent in critical care, and tight control reduces mortality. 
Targeted glycaemic control can be achieved by frequent fitting and prediction of a 
modelled insulin sensitivity index, SI. However, this parameter varies significantly in the 
critically ill as their condition evolves. A 3-D stochastic model of hourly SI variability is 
constructed using retrospective data from 18 critical care patients. The model provides a 
blood glucose level probability distribution one hour following an intervention, enabling 
accurate prediction and more optimal glycaemic control. Copyright © 2006 IFAC 
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1. INTRODUCTION 

 
Hyperglycaemia and severe insulin resistance are 
prevalent in the critically ill, and tight control can 
reduce mortality up to 45% (Van den Berghe et al., 
2001). Chase et al. (2005a) clinically verified a 
targeted control algorithm that accounts for inter-
patient variability and evolving physiological 
condition. The adaptive control approach identifies 
patient dynamics, particularly insulin sensitivity, to 
determine the best control input. Hence better 
understanding and modelling of patient variability in 
the ICU can lead to better glycaemic management. 
 
Therefore, the ultimate goal of this study is to 
produce model-base blood glucose confidence bands 
to optimise glycaemic control. These bands are based 
on stochastic models developed from clinically 
observed model-based variations, and allow targeted 
control with user specified confidence on the 
glycaemic outcome.  

2. METHODS 
 
2.1 Glucose-Insulin System Model 
 
This study uses a patient-specific glucose-insulin 
system model from Chase et al. (2005a). It accounts 
for time-varying insulin sensitivity and endogenous 
glucose removal, and two saturation kinetics. 
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where G and I denote the glucose above an 
equilibrium level, GE, and the plasma insulin from an 
exogenous insulin input. Insulin utilization over time 
is Q, with effective insulin decay rate k. Endogenous 
glucose removal and insulin sensitivity are pG and SI. 
Insulin distribution volume is VI, and n is plasma 
insulin decay. External nutrition and insulin input are 
P(t) and uex(t). Michaelis-Menten saturation in 
plasma insulin disappearance and insulin-stimulated 
glucose removal are defined by αI and αG. 



       

Insulin sensitivity, SI, is the critical parameter that 
drives the dynamic system response to exogenous 
insulin. This value changes with the severity of 
illness, and thus captures the evolution of the 
patient’s insulin resistance and condition. Hence, 
identifying SI over time is critical to providing safe, 
tight glycaemic control. It will also enable better 
prediction of the outcome of an intervention. 
However, no such models or data currently exist. 

 
 

2.2 Stochastic Model 
 
Patient-specific parameters, pG and SI, are fitted to 
long term retrospective clinical data from 18 patients 
from a 201-patients data audit (Shaw et al., 2004). 
Parameter identification is performed with an 
integration-based method developed by Hann et al. 
(2005). Each patient record spans at least one day 
with data every three-hours or less. This cohort 
broadly represents the cross section of patients seen 
in the ICU, regarding medical condition, age, sex, 
APACHE II scores and mortality. 
 
Zero order piecewise linear functions are used to 
define pG and SI, with a discontinuity every two 
hours for pG and every hour for SI because greater 
variability in SI is previously identified (Hann et al., 
2005). Table 1 shows the parameter values (Chase et 
al., 2005a). 
 
Table 1: Generic parameter values 
 

Parameter Unit Value 
αG L/mU 1/65 
αI L/mU 0.0017 
n min-1 0.16 
k min-1 0.0198 
VI L 3.15 

 
The fitted pG and SI data reveals that the variability 
of both parameters is dependent on its present value. 
The distribution of fitted SI is shown by the dots in 
Figure 1. The probability distribution of potential SI, 
shown by the probability bands, clearly varies with 
its value across the horizontal axis.  
 

 
 
Figure 1: Fitted SI and probability intervals 

Thus, the variations in SI can be treated as a Markov 
process. A Markov process has the property that the 
conditional probability distribution of future states of 
the process, given the present state, depends only 
upon the current state. Therefore, using the Markov 
property of the stochastic behaviour of SI, the 
conditional probability distribution of SI n+1 taking on 
a value y can be calculated by knowing SI n = x: 
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Considering the fitted SI in a 2-D space, as shown in 
Figure 1, the joint probability function across the x-y 
(SI n - SI n+1) plane is defined by the fitted values 
shown by the dots whose coordinates are xi and yi, 
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Effectively, the 2-D joint probability function is the 
normalised summation of normal probability 
distribution functions ),;( 2

ixixx σφ  centred at 

individual data points. 
 
To illustrate a 3-D map in the mind, consider this 
numerical operation as a sand building exercise. If 
the first quadrant of the x-y (SI n - SI n+1) plane, as 
shown in Figure 1, is where the sand box is confined 
in, and that a pile of sand of a cubic unit is dropped 
onto every dot in Figure 1, then the resulted sand 
sculpture is the simple representation of the joint 
probability P(x, y) on the x-y (SI n - SI n+1) plane. In 
Equations (5)-(7), the variance σ  at each data point 
is a function of the local data density in a centred and 
orthonormalised space of x and y. Putting Equations 
(6) and (7) into Equation (5) normalises each 

),;( 2
ixixx σφ  and ),;( 2

iyiyy σφ  in the positive 

domain. This, in the sand building exercise example, 
effectively puts boundaries along x = 0 and y = 0, 
confining sand to stay in the first quadrant, and 
therefore forces physiological validity in SI values. 
 
In Equation (4), the right hand side denominator can 
be calculated by integrating Equation (5) with respect 
to y. Hence, Equation (5) can be calculated: 
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