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a b s t r a c t

We compare measurements of the Brownian relaxation response of magnetic nanobeads in suspension

using planar Hall effect sensors of cross geometry and a newly proposed bridge geometry. We find that

the bridge sensor yields six times as large signals as the cross sensor, which results in a more accurate

determination of the hydrodynamic size of the magnetic nanobeads. Finally, the bridge sensor has

successfully been used to measure the change in dynamic magnetic response when rolling circle

amplified DNA molecules are bound to the magnetic nanobeads. The change is validated by

measurements performed in a commercial AC susceptometer. The presented bridge sensor is, thus, a

promising component in future lab-on-a-chip biosensors for detection of clinically relevant analytes,

including bacterial genomic DNA and proteins.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the interest in using magnetic particle-based
biosensors has increased (Göransson et al., 2010; Jaffrezic-Renault
et al., 2007; Koh and Josephson, 2009; Wang and Li, 2008). One of
the main reasons for this is the lack of magnetic background in
most biological samples. Furthermore, magnetic particles of
dimension in the sub-micrometer range, so called nanobeads,
have high physical and chemical stability, are inexpensive to
produce, and can easily be made biocompatible.

Brownian relaxation was first proposed for biosensing by Connolly
and St Pierre (2001). The principle behind using Brownian relaxation
for biodetection is that a naked magnetic particle will have a smaller
hydrodynamic diameter than the same particle bound to a biomole-
cule. This means that the naked particle will relax faster than a
particle bound to a biomolecule. Brownian relaxation has been
demonstrated to work for both detection of DNA (Strömberg et al.,
2008) and proteins (Astalan et al., 2004; Öisjöen et al., 2010; Zardán
Gómez de la Torre et al., 2012). Traditionally, Brownian relaxation is
measured in a SQUID magnetometer, which is expensive and requires
cryogenic liquids for cooling; other methods include inductive setups
and fluxgates (Ludwig et al., 2005). None of these methods are easily
integrated into a lab-on-a-chip system, thus there is a need for a
sensor suited for integration onto a lab-on-chip platform. We have

previously demonstrated that Brownian relaxation can be measured
using a cross-shaped planar Hall effect (PHE) sensor without the need
for any externally applied field since the beads are magnetized by the
field generated by the alternating sensor bias current (Dalslet et al.,
2011; Østerberg et al., 2010).

In the present work, we compare results obtained from
measurements of Brownian relaxation of 40 nm magnetic beads
using two different PHE sensor geometries; the traditional cross
geometry and the newly proposed bridge (PHEB) geometry
(Henriksen et al., 2010; Persson et al., 2011). We first show that
the two sensor types yield the same frequency dependence of the
measured signal from magnetic nanobeads and that the signals
measured by the bridge sensor are six times as large as those
measured by the cross-shaped sensor. We then present results of
the first on-chip experiments, where functionalized magnetic
nanobeads are mixed and hybridized to DNA coils formed in a
rolling circle amplification (RCA) process. These results are found
to compare well with those obtained in experiments carried out
using a commercial AC susceptometer. The presented findings
open up for the development of inexpensive on-chip magnetic
read-out devices for detection of clinically relevant analytes
including bacterial genomic DNA and proteins.

2. Theory

Below, the theoretically expected signals from magnetic beads
when they are magnetized by the sensor self-field for both the
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cross and bridge geometries of planar Hall effect sensors are
derived. It is also described how the dynamic magnetic bead
response can be extracted using lock-in technique.

2.1. Low-field sensor response

The sensors rely on the anisotropic magnetoresistance (AMR)
effect measured in the cross and bridge geometries shown in
Fig. 1. The cross consists of two orthogonal arms each of width w.
The bridge consists of four arms of width w and length l that form
angles 7p=4 to the x-axis as illustrated in Fig. 1. The sensors
consist of a ferromagnetic layer exhibiting the AMR effect, which
is exchange pinned along the positive x-direction in zero external
magnetic field by an antiferromagnet. The sensors are connected
in series and are biased by a current I applied in the positive x-
direction. The resulting sensor output voltages VC and VB of the
cross and the bridge, respectively, are measured along the
y-direction. In zero magnetic field both sensors will ideally give
zero output voltage. Upon application of a small magnetic field Hy

in the y-direction, the magnetization of the ferromagnetic layer
will rotate resulting in non-zero values of VC and VB due to the
AMR effect. The cross sensor is usually termed planar Hall effect
sensor because it shares the geometry with ordinary Hall sensors.
The bridge sensor presented here has recently been shown to
have exactly the same response as the cross sensor except for a
geometrical amplification factor and hence this particular class of
AMR sensors was termed planar Hall effect bridge sensors
(Henriksen et al., 2010). For both sensors, the output for low
applied magnetic fields can be written as

VC ¼ ISC,0Hy, ð1Þ

VB ¼ ISB,0Hy, ð2Þ

where SC,0 and SB,0 are the low-field sensitivities of the cross and
bridge sensors, respectively. When the two sensors have the same
value of w, the two sensitivities are ideally related as
SB,0 ¼ ðl=wÞSC,0 (Henriksen et al., 2010).

2.2. Response to sensor self-field and magnetic beads

We consider the self-field Hsf acting on the sensor in the
directions indicated in Fig. 1 due to the applied sensor bias
current. For the present sensors, part of the sensor bias current
is shunted in the antiferromagnetic layer. This gives rise to an
effective in-plane magnetic field acting on the ferromagnetic layer
aligned perpendicular to the direction of the current Ic through
the conductor. We write this effective field as Icg0, where g0 is a
constant that depends on the sensor stack and sensor geometry.
Likewise, magnetic beads that are present on and near the
conductor will be magnetized by the field from the sensor bias

current and give rise to a net positive field acting on the
conductor. This we write as Icg1w, where g1 depends on the
sensor geometry and bead distribution and w is the magnetic bead
susceptibility (Hansen et al., 2010). Hence, we write the total self-
field acting on the sensor due to the applied bias current as

Hsf ¼ Icg0þ Icg1w: ð3Þ

For the cross sensor, the entire current passes through the sensor
and the self-field acts in the positive y-direction. Inserting Ic ¼ I

and Hy ¼Hsf in Eq. (1) yields the expected self-field signal:

VC ¼ I2SC,0ðg0þg1wÞ: ð4Þ

For the bridge sensor, only half of the bias current passes through
each branch and the sensor is sensitive only to the y-component
of the self-field. Inserting Ic ¼ I=2 and Hy ¼Hsf=

ffiffiffi

2
p

in Eq. (2) yields
the expected self-field signal:

VB ¼ 2�3=2I2SB,0ðg0þg1wÞ, ð5Þ

where we have implicitly assumed that g0 and g1 are the same for
the two sensor types. Combining Eqs. (4) and (5), we find that the
ratio of the self-field signals for the two sensors is

VB=VC ¼ 2�3=2
ðSB,0=SC,0Þ ð6Þ

and that, ideally, VB=VC ¼ 2�3=2
ðl=wÞ.

2.3. Dynamic magnetic susceptibility measurements

To probe the dynamic magnetic properties of magnetic
nanobeads, we apply an alternating sensor bias current
IðtÞ ¼ IAC sinð2pftÞ, where IAC is the current amplitude, f is the
frequency and t is the time. The response of a bead ensemble to
the alternating magnetic field is described by the complex
magnetic susceptibility:

w¼ w0�iw00 � 9w9cos f�i9w9sin f, ð7Þ

where w0 and w00 are the components of w in-phase and out-of-
phase with the magnetic field, respectively, and f is the phase lag
of the magnetic response with respect to the magnetic field. As
the self-field signals are proportional to I2, the signals must be
detected at twice the frequency ð2f Þ of the bias current. This can
be achieved by measuring the 2nd harmonic signal V2 ¼ V 02þ iV 002
using lock-in technique, where V 02 and V 002 are the in-phase and
out-of-phase signals, respectively. We have previously shown
(Dalslet et al., 2011; Østerberg et al., 2010) that the 2nd harmonic
signals for the cross sensor are

V 0C,2 ¼�2�3=2I2SC,0g1w00, ð8Þ

V 00C,2 ¼�2�3=2I2SC,0ðg0þg1w0Þ: ð9Þ

Hence, VC,2
0 is directly proportional to the out-of-phase suscept-

ibility w00 and V 00C,2 depends linearly on the in-phase susceptibility
w0. The corresponding expressions for the bridge sensor can be
found using Eq. (6).

2.4. Brownian relaxation of magnetic beads

We consider a magnetic bead, where the superparamagnetic
relaxation time due to internal flipping of the magnetic moment
of the bead is much longer than the Brownian relaxation time due
to a physical rotation of the bead (Brown, 1963). Hence, we
assume that Brownian relaxation is the dominating relaxation
mechanism in the investigated frequency window. Brownian
relaxation is characterized by the Brownian relaxation frequency

Fig. 1. Picture of a bridge and a cross sensor connected in series with definition

of geometric variables and the orientation of self-fields acting on the sensor. The

current is applied in the x-direction, while sensor signals are measured across the

sensors in the y-direction.
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