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Highlights

• Estimating the PSF at the same 
time in the recently proposed 
compressive deconvolution 
framework for ultrasound 
imaging.

• Taking fully advantage of the 
existing method of PSF estima-
tion.

• Presenting an analytical solu-
tion to the sub-problem of PSF.

Graphical abstract

Abstract

The recently proposed framework of ultrasound compressive deconvolution offers the possibility of decreasing the acquired data while improv-
ing the image spatial resolution. By combining compressive sampling and image deconvolution, the direct model of compressive deconvolution 
combines random projections and 2D convolution with a spatially invariant point spread function. Considering the point spread function known, 
existing algorithms have shown the ability of this framework to reconstruct enhanced ultrasound images from compressed measurements by in-
verting the forward linear model. In this paper, we propose an extension of the previous approach for compressive blind deconvolution, whose aim 
is to jointly estimate the ultrasound image and the system point spread function. The performance of the method is evaluated on both simulated 
and in vivo ultrasound data.
© 2017 AGBM. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Despite its intrinsic rapidity of acquisition, several ultra-
sound (US) applications such as duplex Doppler or 3D imaging 
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may require higher frame rates than those provided by conven-
tional acquisition schemes or may suffer from the high amount 
of acquired data. In this context, compressive sampling (CS) 
framework appears as an appealing solution to overcome these 
issues. Since the first works in compressive US imaging pub-
lished in 2010 [1–4], there have been several studies devoted to 
this topic to date [5–11]. Conventional approach to sample sig-
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nals or images follows the Shannon–Nyquist theorem. Accord-
ing to the Shannon–Nyquist sampling theorem, the sampling 
rate must be at least twice the maximum frequency contained 
by the signal. However, the theory of CS makes it possible to 
go against the common knowledge in data acquisition. It al-
lows to recover, via non linear optimization routines, an image 
from few linear measurements (below the limit standardly im-
posed by the Shannon–Nyquist theorem) provided two condi-
tions: i) the image must be sparse in a known basis or frame 
and ii) the measurement matrix must be incoherent with the 
sparsifying basis [12]. Existing works focused on these two as-
pects, i.e. the sparsity study and the incoherent acquisition, have 
shown that it is possible to recover US radio-frequency (RF) 
images based on their sparsity in basis such as 2D Fourier trans-
form [13], wavelets [14], waveatoms [15], or learning dictionar-
ies [6], using various acquisition schemes such as projections 
on Gaussian [4] or Bernoulli random vectors [13], plane-wave 
emissions [14] or Xampling [5].

However, despite the promising results, there are still two re-
maining problems regarding the application of CS in US imag-
ing. i) Since perfect sparsity is almost never reachable due to the 
presence of noise and the incoherence between measurement 
matrix and sparse basis cannot be easily satisfied in practical 
situations, the images reconstructed from compressed measure-
ments tend to be less good compared to standard acquisitions, 
especially for a low number of measurements. ii) In the case 
where an exact CS recovery is possible, i.e., the quality in terms 
of resolution of the recovered US images is equivalent to those 
acquired using standard schemes, whereas it is widely accepted 
that image quality is one of the open challenges in US imag-
ing. The signal-to-noise ratio, the spatial resolution and the 
contrast of standard US images are affected by the physical 
phenomenons related to US wave propagation and limited by 
the bandwidth of the transducer of imaging system.

Image deconvolution represents a valuable tool that can 
be used for improving image quality without requiring com-
plicated calibrations of the real-time image acquisition and 
processing systems. US image deconvolution has been exten-
sively studied in the literature, showing very promising results 
[16–18]. Motivated by the interest of CS and deconvolution, 
we have recently proposed a framework called compressive de-
convolution (CD) in US imaging [19]. The objective was to 
reconstruct enhanced RF images from compressed linear mea-
surements, aiming to obtain a higher frame rate or less data 
volume and to enhance the image contrast at the same time. 
The main idea behind CD is to combine CS and deconvolution, 
leading to the following linear direct model:

y = �Hx + n (1)

where y ∈ R
M stands for the M linear compressed mea-

surements obtained for one RF image Hx and � ∈ R
M×N

(M << N ) corresponds to the CS acquisition matrix. The RF 
image Hx models that the tissue reflectivity function (TRF) 
x ∈ R

N is degraded by H ∈ R
N×N , which is a block circulant 

with circulant block (BCCB) matrix related to the 2D PSF of 
the US system. Finally, n ∈ R

M represents a zero-mean addi-

tive white Gaussian noise. We emphasize that all the images in 
(1) are expressed in the standard lexicographical order.

Inverting the model in (1) will allow us to estimate the 
TRF x, which is considered as a higher resolved US image, 
from the compressed RF measurements y. Though similar 
models have been recently proposed for general image pro-
cessing purpose [20–23] including a theoretical derivation of 
RIP for random mask imaging [24], we formulated in [19] the 
reconstruction process into a constrained optimization problem 
exploiting the relationship between CS recovery and deconvo-
lution:

min
x∈RN ,a∈RN

‖ a ‖1 +α‖x‖p
p + 1

2μ
‖ y − ��a ‖2

2

s.t. Hx = �a

(2)

where a is the sparse representation of the US RF image Hx

in the transformed domain �. It enables the reconstruction of 
the RF image and the TRF at the same time. α and μ are hy-
perparameters balancing the weight of each term in the cost 
function to minimize. The optimization problem above includes 
three terms: i) the �1-norm term aiming at imposing the spar-
sity of the RF image in the sparse basis �, ii) the �p-norm term 
modeling the a priori of the target image x, where the shape 
parameter p related to the Generalized Gaussian Distribution 
(GGD) is ranging from 1 to 2 (1 ≤ p ≤ 2), allowing us to gen-
eralize the existing works in US image deconvolution mainly 
based on Laplacian or Gaussian statistics [25,26], iii) the data 
fidelity term.

In order to solve this problem, an algorithm based on the 
Alternative Direction Method of Multipliers (ADMM) was 
initially proposed in [19] and was further improved with 
faster convergence based on Simultaneous Direction Method 
of Multipliers (SDMM) in [27]. Both algorithms have achieved 
promising results with the assumption that the PSF was known 
or could be estimated in a pre-processing step. However, the 
PSF cannot be perfectly known in practical situations. An ini-
tial investigation to jointly estimate the PSF has been recently 
published in [28] to show the possibility of recovering RF im-
age, TRF and PSF at the same time.

In this paper, following the previous work and exploiting the 
prior information on the PSF, we propose and detail a compres-
sive semi-blind deconvolution (CSBD) algorithm. The results 
on simulated and experimental images show improved perfor-
mance compared to the non-blind approach. The remainder of 
this paper is organized as follows. In Section 2 we formulate the 
compressive semi-blind deconvolution problem. Section 3 de-
tails our proposed CSBD algorithm and simulation results are 
shown in Section 4 before drawing the conclusions in Section 5.

2. Methods

2.1. Problem formulation

Given the commutativity of the 2D convolution product, let 
us write the CD direct model in a different form, that includes 
the PSF kernel h instead of the associated BCCB matrix H :
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