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Abstract: We consider strongly connected networks of input-to-state stable (ISS)
systems. Provided a small gain condition holds it is shown how to construct an
ISS Lyapunov function using ISS Lyapunov functions of the subsystems. The
construction relies on two steps: The construction of a strictly increasing path
in a region defined on the positive orthant in Rn by the gain matrix and the
combination of the given ISS Lyapunov functions of the subsystems to a ISS
Lyapunov function for the composite system.
Novelties are the explicit path construction and that all the involved Lyapunov
functions are nonsmooth, i.e., they are only required to be locally Lipschitz
continuous. The existence of a nonsmooth ISS Lyapunov function is qualitatively
equivalent to ISS.
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1. INTRODUCTION

In this paper we are interested in the stability
of a network of nonlinear input to state stable
(ISS) systems. A nonlinear small gain theorem for
networks of input-to-state stable (ISS) systems
was obtained in Dashkovskiy et al. (2007). Here
we provide a constructive method to find a nons-
mooth ISS Lyapunov function for a composite sy-
stem, when the ISS Lyapunov functions and non-
linear gains for the subsystems are all known. This
result is particularly useful, since the knowledge of
a Lyapunov function directly leads to knowledge
of invariant sets and allows for different controller
design methods, see, e.g., Khalil (1996). A main
step of the construction was already carried out in
Dashkovskiy et al. (2006c). Namely, it was shown
how to construct a nonsmooth ISS Lyapunov func-
tion, if a strictly increasing function σ : R+ → Rn

+

exists such that D(Γ(σ(t))) < σ(t) for all t > 0.
Here Γ is the gain matrix, and D is a diagonal
scaling operator. In Dashkovskiy et al. (2006c) the

existence of such a function was shown only for the
case of three interconnected systems. The case of
two systems in a feedback loop was considered
in Jiang et al. (1994) and the construction of
Lyapunov functions for this case was presented
in Jiang et al. (1996).

The small gain condition derived in Dashkovs-
kiy et al. (2007) leads to interesting invariance
properties of the map defined by Γ, which al-
low a construction of the desired σ. Here we are
going to construct a σ, that is differentiable al-
most everywhere. The overall Lyapunov function
is then obtained as a weighted maximum of the
ISS Lyapunov functions of the subsystems similar
to Jiang et al. (1996). As a consequence the con-
structed Lyapunov function is not differentiable,
so that we resort to nonsmooth formulations of
ISS Lyapunov functions. An alternative would be
to use a smooth approximation, which is possible
in principle. We avoid this as it does not add to
the understanding of our construction.

Copyright © 2007 IFAC



In Proposition 12 we construct a piecewise linear
and strictly increasing function σs : [0, 1] → Rn

+

up to some predetermined radius, provided that
Γ is irreducible. If Γ is even primitive, then this
function can be extended to a function σ ∈ Kn

∞.
If Γ is only irreducible, this function σ can still be
defined, but under slightly stronger assumptions,
see Theorem 14.

2. NOTATION

Let K = {f : R+ → R+ : f is continuous, strictly
increasing and f(0) = 0} and K∞ = {f ∈ K :
f is unbounded}. A function β : R+ × R+ → R+

is of class KL, if it is of class K in the first
component and strictly decreasing to zero in the
second component.

A matrix Γ = (γij) ∈ (K∞ ∪ {0})n×n defines a
map on Rn

+ via Γ(s)i =
∑n

j=1 γij(sj), for s ∈ Rn
+,

in analogy to matrix vector multiplication.

The adjacency matrix AΓ = (aij) of a matrix
Γ ∈ (K∞∪{0})n×n is defined by aij = 0 if γij ≡ 0
and aij = 1 otherwise. We say that the matrix Γ
is primitive, irreducible or reducible if and only
if AΓ is primitive, irreducible or reducible. See
e.g. Berman and Plemmons (1979) for definitions.

On Rn
+ we use the partial order induced by the

positive orthant. For vectors x, y ∈ Rn
+ we define

x ≥ y : ⇐⇒ xi ≥ yi for i = 1, . . . , n,

x > y : ⇐⇒ xi > yi for i = 1, . . . , n, and
x 	 y : ⇐⇒ x ≥ y and x 6= y.

A map ∆ : Rn
+ → Rn

+ is monotone if x ≤ y implies
∆(x) ≤ ∆(y). Clearly Γ ∈ (K∞∪{0})n×n induces
a monotone map. For Γ : Rn

+ → Rn
+, ∆ : Rn

+ →
Rn

+ we write Γ ≥ ∆ if for all x ∈ Rn
+ we have

Γ(x) ≥ ∆(x). Similarly, we write Γ � ∆, Γ > ∆,
respectively Γ 	 ∆, if for all x ∈ Rn

+ \ {0} we
have Γ(x) � ∆(x), Γ(x) > ∆(x), respectively
Γ(x) 	 ∆(x). Here x � y means that for at least
one component i the inequality xi < yi holds.

For monotone maps Γ on Rn
+ we define the follo-

wing sets:

Ω(Γ) = {x ∈ Rn
+ : Γ(x) < x},

Ωi(Γ) = {x ∈ Rn
+ : Γ(x)i < xi},

Ψ(Γ) = {x ∈ Rn
+ : Γ(x) ≤ x}.

If no confusion arises we will omit the reference
to Γ. Note that for general monotone maps we
have Ω ( Ψ, but for Γ ∈ (K∞ ∪ {0})n×n we have
equality.

By | · | we denote the 1-norm on Rn and by Sr the
induced sphere of radius r in Rn intersected with
Rn

+, which is an n-simplex. By Uε(x) we denote
the open neighborhood of radius ε around x with
respect to the Euclidean norm ‖ · ‖.

For our construction we will need the notions of
proximal subgradient and nonsmooth ISS Lyapu-
nov functions, c.f. Clarke et al. (1998), Clarke
(2001). Also we need some results from nonsmooth
analysis.

Definition 1. A vector ζ ∈ RN is a proximal
subgradient of a function φ : RN → (−∞,∞] at
x ∈ RN if there exists a neighborhood U(x) of x
and a number σ ≥ 0 such that

φ(y) ≥ φ(x) + 〈ζ, y − x〉 − σ|y − x|2 ∀y ∈ U(x).

The set of all proximal sub-gradients at x is the
proximal sub-differential of φ at x and is denoted
by ∂P φ(x).

3. INPUT-TO-STATE STABILITY

We consider a finite set of interconnected systems

Σi : ẋi = f(x1, . . . , xn, u), fi : RN+M → RNi ,
(1)

i = 1, . . . , n, where xi ∈ RNi , u ∈ RM ,
∑

Ni = N .

If we consider one of the systems, indexed by i,
and interpret the variables xj , j 6= i, and u as
unrestricted inputs, then this system is assumed
to have unique solutions defined on [0,∞) for
all L∞-inputs xj : [0,∞) → RNj , j 6= i, and
u : [0,∞) → RM .

We write the interconnection of systems (1) as

Σ : ẋ = f(x, u), f : RN+M → RN , (2)

where x = (xT
1 , . . . , xT

n )T .

We will impose ISS conditions on the subsystems
given by (1) and we are interested in conditions
guaranteeing ISS of the interconnected system (2).
To this end we will construct an ISS Lyapunov
function for (2).

Definition 2. (ISS Lyapunov function). A smooth
function V : RN → R+ is an ISS Lyapunov func-
tion of (2) if there exist ψ1, ψ2 ∈ K∞, χ ∈ K∞,
and a positive definite function α such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ RN , (3)

V (x) ≥ χ(|u|) =⇒ ∇V (x) · f(x, u) ≤ −α(V (x)).
(4)

The function χ is called a Lyapunov-gain. Sy-
stem (2) is input-to-state stable (ISS) if it has an
ISS Lyapunov function.

It is well known, see Sontag and Wang (1996),
that the existence of an ISS Lyapunov function is
equivalent to the system being ISS in the following
sense:

There exist β ∈ KL and γ ∈ K∞ such that for all
initial conditions x0 ∈ RN and all L∞-inputs u(·)
it holds that
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