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∗∗ CESAME, Université Catholique de Louvain, 4, Avenue
G. Lemaitre, 1348 Louvain-La-Neuve, Belgium.

∗∗∗ Department of Mathematics, Université Paris-Sud,
Bâtiment 425, 91405 Orsay, France.

∗∗∗∗ Centre de Robotique (CAOR), ENSMP,
60, Boulevard Saint Michel, 75272 Paris Cedex 06, France.

Abstract: A boundary control law with integral actions is proposed for a generic
class of two-by-two homogeneous systems of linear conservation laws. Sufficient
conditions on the tuning parameters are stated that guarantee the asymptotic
stability of the closed-loop system. The closed-loop stability is analysed with an
appropriate Lyapunov function. The control design method is validated with an
experimental application to the regulation of water depth and flow rate in a pilot
open-channel described by Saint-Venant equations. This hydraulic application
shows that the control can be robustly implemented on nonhomogeneous systems
of nonlinear conservation laws. Copyright c©2007 IFAC
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1. INTRODUCTION

In this paper, we are concerned with two-by-two
systems of conservation laws that are described
by hyperbolic partial differential equations, with
one independent time variable t ∈ [0,∞) and
one independent space variable on a finite interval
x ∈ [0, L]. Such systems are used to model many
physical situations and engineering problems. A
famous example is that of Saint-Venant (or shal-
low water) equations which describe the flow of

water in irrigation channels and waterways. This
example will be presented in Section 4. Other
typical examples include gas and fluid transporta-
tion networks, packed bed and plug-flow reactors,
drawing processes in glass and polymer industries,
road traffic etc. For such systems, the boundary
control problem that we address is the problem of
designing feedback control actions at the bound-
aries (i.e. at x = 0 and x = L) in order to ensure
that the smooth solution of the Cauchy problem
converges to a desired steady-state.



The present paper is in the direct continuation of
our previous paper (Coron et al. (2007) ) where
a static feedback control law was presented and
the closed-loop stability analysed with an appro-
priate Lyapunov function. But obviously, a static
control law may be subject to steady-state reg-
ulation errors in case of constant disturbances or
model inaccuracies. In the present paper, we show
how additional integral actions can be introduced
in the control law in order to cancel the static
errors and how the Lyapunov function can be
modified in order to prove the asymptotic stability
of the closed-loop system. The statement of the
control law and the Lyapunov stability analysis
are developed in Sections 2 and 3 for a generic
homogeneous system of two linear conservation
laws. In Section 4, we present an experimental
validation on a laboratory pilot plant. This hy-
draulic application clearly shows that the control
can be robustly implemented on nonhomogeneous
systems of nonlinear conservation laws.

2. STATEMENT OF THE CONTROL LAW

We consider the class of two-by-two systems of
linear conservation laws of the general form:

∂th(t, x) + ∂xq(t, x) = 0 (1)

∂tq(t, x)+αβ∂xh(t, x)+(α−β)∂xq(t, x) = 0 (2)
where

• t and x are the two independent variables :
a time variable t ∈ [0,+∞) and a space
variable x ∈ [0, L] on a finite interval;

• (h, q) : [0,+∞)× [0, L] → R2 is the vector of
the two dependent variables (i.e. h(t, x) and
q(t, x) are the two states of the system);

• α and β are two real positive constants:

α > β > 0.

The first equation (1) can be interpreted as a mass
conservation law with h the density and q the
flux. The second equation can then be interpreted
as a momentum conservation law. As usual in
control design, the model (1)-(2) must be viewed
as a linear approximation of the system dynamics
around a steady-state. This will be illustrated
with the application of Section 4.

We are concerned with the solutions of the Cauchy
problem for system (1)-(2) over [0,+∞) × [0, L]
under an initial condition

h(0, x), q(0, x) x ∈ [0, L].

Furthermore, it is assumed that the system is sub-
ject to physical boundary conditions that can be
assigned by an external operator and are written
in the following general abstract form:

g0(h(t, 0), q(t, 0), u0(t)) = 0 t ∈ [0,+∞) (3a)
gL(q(t, L), h(t, L), uL(t)) = 0 t ∈ [0,+∞) (3b)

with g0, gL : R3 → R. The functions u0, uL:
[0,+∞) → R represent the boundary control ac-
tions that can be manipulated by the operator. A
concrete illustration of such boundary conditions
will be given in Section 4.

In order to define the feedback control laws, it is
convenient to introduce the Riemann coordinates
(see e.g. Lax (1973)) defined by the following
change of coordinates:

a(t, x) = q(t, x) + βh(t, x) (4a)
b(t, x) = q(t, x)− αh(t, x). (4b)

With these coordinates, the system (1)-(2) is
rewritten under the following diagonal form:

∂ta(t, x) + α∂xa(t, x) = 0 (5a)
∂tb(t, x)− β∂xb(t, x) = 0. (5b)

The change of coordinates (4) is inverted as fol-
lows:

h(t, x) =
a(t, x)− b(t, x)

α+ β
(6a)

q(t, x) =
αa(t, x) + βb(t, x)

α+ β
. (6b)

In the Riemann coordinates, the control problem
can be restated as the problem of designing the
control laws in such a way that the solutions
a(t, x) and b(t, x) converge to zero. We shall show
that this problem can be solved by selecting the
boundary control laws u0(t) and uL(t) such that
the Riemann coordinates satisfy linear boundary
conditions of the following form:

a(t, 0) + k0b(t, 0) +m0y0(t) = 0 (7a)
b(t, L) + kLa(t, L) +mLyL(t) = 0 (7b)

where k0, kL,m0,mL are constant tuning parame-
ters while y0 and yL are integrals of the flow q(t, 0)
and the density h(t, L) respectively:

y0(t) =
∫ t

0

q(s, 0)ds =
∫ t

0

αa(s, 0) + βb(s, 0)
α+ β

ds

(8a)

yL(t) =
∫ t

0

h(s, L)ds =
∫ t

0

a(s, L)− b(s, L)
α+ β

ds.

(8b)

Remarks

1) Conditions (7) give only an implicit definition
of the control laws. The derivation of explicit ex-
pressions obviously requires an explicit knowledge
of the functions g0 and gL in (3). In the special
case where the boundary conditions (3) are lin-
ear, u0 and uL reduce to standard Proportional-
Integral (PI) control laws. This point will be fur-
ther illustrated in Section 4.

2) In our previous paper (Coron et al. (2007)), we
have dealt with the special case without integral
actions, i.e. m0=mL=0 in (7). We have shown
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