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Abstract: This paper proposes a methodology for state feedback stabilization of
nonlinear systems with time-varying input delay, and more particularly when the
delay varies w.r.t. the state variables. The control design approach is based on
state prediction computation, and the numerical issue resulting from the actual
implementation of such a control law is also discussed. The overall method is in
particular illustrated on an example of water flow control in open-channel systems.

Copyright © 2007 [FAC

Keywords: Nonlinear control, nonlinear time-delay systems, time-varying delay,
state-dependent delay, state feedback, state predictor.

1. INTRODUCTION

Time-delay systems belong to the class of
infinite-dimensional systems. In the linear case,
a time-delay system has in general an infinite
number of eigenvalues. Control laws have been
proposed to assign a finite number of eigenvalues
in closed loop (Manitius and Olbrot [1979]). This
approach is called the finite spectrum assignment
problem. Solutions to this problem are obtained in
terms of delay-distributed control laws. However,
the implementation of delay-distributed control
laws is difficult due to the integral term which
cannot be computed explicitly. In (Manitius and
Olbrot [1979]), it is suggested to approximate the
integral by a sum of point-wise delays by using
a quadrature rule. However, this approach may
fail due to the occurrence of unstable poles in-
troduced by the discretization procedure (Assche
et al. [1999]). The use of block-pulse functions
has also been proposed in (Fattouh et al. [2001]).
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More recently, a safe implementation of delay-
distributed control laws has been proposed by
using a low-pass filter in the control loop (Mondie
and Michiels [2003]). In (Maza-Casas et al. [2000])
a passivity-based control scheme is proposed for
the stabilization of SISO nonlinear systems with
input delay. However, distributed-delay control
laws for nonlinear systems has not yet been ex-
tensively studied. Other approaches have been
proposed for special cases (Mazenc et al. [2003],
Mazenc and Bliman [2006], Zhang et al. [2006]).

In the present paper, the purpose is to extend
the so-called finite spectrum assignment approach
already available for linear input-delayed systems,
to the case of nonlinear input-delayed systems,
with even state-dependent input delays. Notice
that the stability problem for such systems with
state-dependent delays was previously considered
in Verriest [2002], but for linear systems, and that
the work we propose here comes as a continuation
of Georges et al. [2007] where the problem was
already dedicated to nonlinear systems, but basi-



cally with constant input delays.

The paper in organized as follows: section 2 first
presents the formal statement of the proposed
approach. Section 3 then discusses numerical is-
sues for practical implementation, while section 4
proposes a possible use in water flow control as
an illustrative example of application. Section 5
finally gives some conclusions.

2. A STABILIZATION SCHEME FOR
NONLINEAR SYSTEMS WITH VARYING
INPUT DELAY

Let us consider nonlinear systems with a varying
input delay of the following general form:

i(t) = F(x(t), u(t — 7(t,z(1)))) (1)

where x(t) €IR™ is the state vector, u(t) eR™ is
the control input, and 7(¢, z(t)) is a varying delay
with known smooth evolution w.r.t. its arguments.
The origin of the system is supposed to be an
equilibrium point (F(0,0) = 0).

Clearly, for causality, 7(¢,2(t)) should remain
larger than O for any time and realizable trajec-
tory, and in particular around the origin = 0.
The purpose here is to design a state feedback
law in order to stabilize the origin of the system
in closed loop. To that end, the idea is to extend
the so-called finite spectrum assignment approach
already available for linear input-delayed systems
(Mondie and Michiels [2003]).

This approach is based on the following principle:
firstly a prediction of the state at an appropriate
prediction time §, denoted by w,(t,t + 6), is
computed from the available state x(t) at time
t and input controls (), 6 € [t — 4,¢]. Then the
predicted state is used to compute the control law.
The prediction time is chosen so that the effect of
the delay vanishes and the closed-loop system is
no more a time-delay system.

In the case of constant delay, the prediction time is
just given by the delay 7 itself (e.g. as in Georges
et al. [2007]). When the delay might be varying
7(t), the prediction horizon cannot be 7 anymore
but a time-varying prediction horizon §(¢) chosen
such that §(t) = 7(t 4+ (¢)). This condition is
used to ensure that a control input w(t) can be
computed since in this case one has u(t — 7(¢t +
5(t)) + 0(t)) = u(t)(Witrant et al. [2004]).

The same obviously occurs when the delay further
depends on the state: ¢ is to be chosen such that
0ty =Tt + (), z(t+4(t))).

The stability of the closed-loop system

Bt +6(t)) = F(z(t + (1)), ((t +6(¢)))) (2)

expressed in the time coordinate ¢+ (), can then
be guaranteed if there exists a smooth feedback

u(t) = ®(x(t)) ensuring the closed-loop stability
of the non-delayed system z(t) = F(x(t), u(t)).

The main issue remains the computation at time
t of the prediction of the state at time t + §(¢),
denoted by z,(t,t + d(t)), which is given by:

xp(t, t+0(t) = z(t)+

t+6(t)
+ / F(z,(t,0),u(@ —7(0,2,(¢,0))))do.
i

The predicted state x,(t,t + 6(¢)) may also be

defined in terms of an operator ¥ defined as
follows:

wp(t,t +0(t)) = V() {u(0)}oer—ra)  (3)

Finally, the control law is given by

u(t) = ®(¥(z(t), {u(0)}oer-ra))  (4)

From now on, in order to simplify a little bit
the notations, but still keeping the specificity of
a state-dependent varying delay, we will limit
the presentation to the case when 7 = 7(z(t))
(without restriction).

The main result in that respect can then be stated
as follows:

Theorem 1. If there exists a smooth state
feedback ®(x) making the origin of #(t) =
F(x(t), ®(x(t)) locally exponentially stable - in
the sense that (Khalil [1996]):

there exists D C R™ containing and a C' positive
definite function V : D — R such that Vx € D:

() erllzl* < V(x) < cafl2]|?

oV (x)
ox

(i) F(z,®(2)) < —csz]?
for positive constants ¢, co and cs,

then the control law (4) makes the origin of (1)
locally asymptotically stable.

Proof: First of all, define f(x) := F(x, ®(z)) and
z(t) := x(t + 0(t)). Then the closed-loop system
(1)-(4) can be re-written w.r.t. z and f as:

£(t) = (L4 6(0) f(=(t)) (5)

Let us then consider V(z) as a candidate Lya-
punov function for this system. Clearly:

V= (14 60) T (:(0).

Now notice that from the definition of § we have:

- T = @ )

where g—;(z)f(z) vanishes when z goes to zero.

Hence there exists a domain D CIR™ of states
z of D and containing the origin, such that 1 —
97(2)f(z) > 0, and consequently such that 5>
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