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Abstract: We present a novel model reduction methodology for the approximation
of large-scale nonlinear systems. The methodology stems from the need to find
computationally efficient substitute models for nonlinear systems. The nonlinear
system is viewed as a grey-box model with a mechanistic (first-principle) compo-
nent and an empirical (black-box) component identified for the computationally
intensive parts of the nonlinear system. The mechanistic part is approximated
using proper orthogonal decompositions whereas the empirical part is identified as
polynomial functions by parameter estimation using the reduced order mechanistic
part. Copyright c© 2007 IFAC

Keywords: Model Reduction, Parameter Estimation, Proper Orthogonal
Decomposition, Distributed Parameter Systems

1. INTRODUCTION

Distributed parameter systems represented by
partial differential equations (PDE’s) are abun-
dant in applications such as the modeling of flow
phenomena in distillation columns, chemical re-
actors, heat exchangers, or in glass manufactur-
ing. The numerical simulation of such models in-
variably involves the discretization of equations
using numerical techniques such as finite differ-
ences, finite volume methods or finite element
methods. In fact, all commercial computational
tools for distributed parameter systems are based
on these discretization techniques. Although these
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computational tools yield satisfactory and accu-
rate solutions, the computational time required
to accurately approximate system responses from
boundary conditions, input variables and system
parameters is often quite large. In spite of the
tremendous advancements in computing power,
the use of simulation tools for on-line and real-
time applications such as model-based control, dy-
namic optimization, plant monitoring or parame-
ter estimation, is often limited by the simulation
time of these models. This makes it necessary to
find computationally more efficient approximate
models that retain the accuracy of the complex
models. This need has led to the development and
implementation of various model reduction tech-
niques for distributed parameter systems (Gay
and Ray, 1995), (Mahadevan and Hoo, 2000),



(Hoo and Zheng, 2001), (Shvartsman et al., 2000),
(Shvartsman and Kevrekidis, 1998).

Most model reduction techniques are based on
projection methods where high dimensional (state-
) variables are projected on low dimensional man-
ifolds so as to define a reduced order dynami-
cal system. The technique of proper orthogonal
decomposition (POD), combined with Galerkin
projections is particularly popular in the fluid
dynamics community and has been extensively
discussed and applied in the literature as a model
reduction tool for nonlinear and distributed pa-
rameter systems.

Most of the projection based model reduction
techniques aim to reduce the state dimension of
the system while preserving the input-output be-
havior as good as possible. It is often silently
assumed that a significant state-dimension reduc-
tion implies a significant enhancement of com-
putational speed. However, recent studies have
shown that this is not necessarily the case for the
reduction of nonlinear distributed parameter sys-
tems. See, e.g., (Schlegel et al., 2002), (Rathinam
and Petzold, 2003),(Astrid, 2004),(van den Berg,
2005).

This work is motivated to develop a model ap-
proximation technique with the explicit aim to
improve the computational efficiency while keep-
ing desirable model properties intact. We intro-
duce a new methodology, a grey-box modeling ap-
proach to obtain substitute models. In grey-box
modeling, sometimes also referred to as hybrid

modeling, the system to be approximated is as-
sumed to consist of the interconnection of a known
system component (mechanistic part, white-box
part) with a (partly) unknown component (black-
box). Model reduction is performed on one of
the interconnecting components (the mechanistic,
white-box part), while system identification tech-
niques will be applied to the other component (the
empirical part). There are a number of reasons
that motivate such an approach.

Firstly, finite element discretization of the spa-
tial geometry of nonlinear distributed parameter
systems typically leads to performing nonlinear
function evaluations in each of the mesh elements.
As a consequence, the computational load per
nonlinear function evaluation is critical for the
total computational load of solving the discretized
model. By separating computationally intensive
nonlinear functions in a model before performing
any kind of model reduction, a structure is created
in which computationally intensive functions can
be substituted by simpler ones that are faster
to evaluate. In this work, polynomial functions
are considered for replacing the computationally
intensive nonlinear functions. This procedure may

lead to computationally more efficient approxi-
mate models.

Secondly, issues such as sparsity of the result-
ing models and model uncertainty can be easily
addressed within this approach. A more detailed
discussion on the methodological aspects of this
approach can be found in (Romijn et al., n.d.)

The paper is structured as follows: Section 2
presents some preliminaries on grey-box model-
ing and POD reduction. Section 3 provides some
background on the reduction methodology. In Sec-
tion 4, the proposed methodology is implemented
on a dynamical system. Finally, conclusions are
deferred to section 5.

2. PRELIMINARIES

2.1 Grey-Box Modeling

A grey-box model consists of a combination of a
mechanistic (first principle) model and an em-
pirical (black-box ) model. Several grey-box model
structures have been proposed in the literature
(Psichogios and Ungar, 1992), (Thompson and
Kramer, 1994),(Abonyi et al., 2002). The most
general form is based on the ordinary differential
equation

ẋ = fFP (x, u, fEM (x, u)) (1)

which contains first principle equations fFP which
describe the interaction of the model states x,
inputs u and the outputs of an empirical model
fEM. Such models are usually derived from con-
servation laws and balance equations but are,
without exception, reduced to lumped models of
low order. A grey-box model that is governed by
a partial differential equation (PDE) including an
empirical term has not been investigated before
to the knowledge of the authors. In this work the
general partial differential equation

∂T

∂t
= A(T ) + B(u) + F(T, u) (2)

is considered. Here T (., t) denotes the state vari-
able at position x in some spatial geometry Ω
and at time t, u(x, t) denotes the input. For all
t, T (., t) is assumed to belong to a Hilbert space
H; A is a linear operator A : D(A) → H where
D(A) ⊂ H is the domain of A; B denotes the
input operator and F represents nonlinear terms
and model mismatch. The system (2) is separated
in two parts

∂T

∂t
= A(T ) + B(u) + q (3a)

q = F(T, u) (3b)

where the nonlinear function F(T, u) is viewed as
the (known or unknown) empirical part of the
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