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a b s t r a c t

Soft tissues exhibit highly nonlinear rate and time-dependent stress-strain behaviour. Strain and strain
rate dependencies are often modelled using a hyperelastic model and a discrete (standard linear solid)
or continuous spectrum (quasi-linear) viscoelastic model, respectively. However, these models are unable
to properly capture the materials characteristics because hyperelastic models are unsuited for time-
dependent events, whereas the common viscoelastic models are insufficient for the nonlinear and finite
strain viscoelastic tissue responses. The convolution integral based models can demonstrate a finite vis-
coelastic response; however, their derivations are not consistent with the laws of thermodynamics. The
aim of this work was to develop a three-dimensional finite hyper-viscoelastic model for soft tissues using
a thermodynamically consistent approach. In addition, a nonlinear function, dependent on strain and
strain rate, was adopted to capture the nonlinear variation of viscosity during a loading process. To
demonstrate the efficacy and versatility of this approach, the model was used to recreate the experimen-
tal results performed on different types of soft tissues. In all the cases, the simulation results were well
matched (R2 P 0:99) with the experimental data.

� 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In the field of biomechanics, soft tissue characterisation through
mathematical models has progressed rapidly. Biological tissues
exhibit a highly nonlinear stress-strain relationship, in which the
stress may depend on the strain, strain rate, and strain history
(Holzapfel, 2000; Sanjeevi, 1982; Zhao et al., 2008).

To address such complex rate and time-dependent material
responses, a viscoelastic modelling framework is necessary. The
discrete element based standard linear solid (SLS) model or the
continuous relaxation spectrum based quasi-linear viscoelastic
model are traditionally the most popular choices for soft tissue
modelling (Fung, 2013; Iatridis et al., 2003; Smith et al., 2005).
However, the usage of these models is confined because of their
inability to address the nonlinear and finite strain viscoelastic
properties (Provenzano et al., 2002). Chung and Buist (2012)
extended the SLS model capabilities to address the nonlinear soft
tissue phenomena, but their model lacks the ability to deal with
the true three-dimensional (3D) nature of the tissue.

Finite strain viscoelasticity is usually modelled using a different
framework which is an extension of the classical Boltzmann super-
position principle to finite strain. In this framework, the material

responses are assumed to be the sum of strain rate independent
and dependent behaviour where the strain rate dependency is
modelled through a time convolution integral (Petiteau et al.,
2013). A wealth of literature is available about models based on
the convolution integral method (CIM) where each model utilises
different fading memory functions to reflect the effect of strain his-
tory on stress (Miller and Chinzei, 1997; Miller, 1999; Troyer et al.,
2012a,b; Troyer and Puttlitz, 2012). However, a major limitation of
these models is that they are not founded on the principles of ther-
modynamics. Thus, the constitutive parameters must be chosen
carefully and the validation of the second law of thermodynamics
must be checked a posteriori for these models (Pioletti et al., 1998;
Provenzano et al., 2001). In this context, Pioletti and
Rakotomanana (2000) proposed a thermodynamically consistent
CIM based model by assigning two different strain energy func-
tions to the elastic and viscous properties of the material. However,
their model needs a complex process to calibrate the relaxation
time constants and parameters (Khajehsaeid et al., 2014).

Several works have demonstrated the existence of different
stress descent rates in a single stress relaxation path, which cor-
roborates the nonlinearity and strain-level dependency of viscosity
(Van Loocke et al., 2009; Wheatley et al., 2016; Zhao et al., 2003).
From a modelling point of view, this behaviour is usually described
by introducing more than one dashpot element with different time
constants and strain-dependent parameters. However, this leads to
a diverse array of configurations even for the same tissue sample as
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the authors usually combine the dashpot elements in different
ways to make them suitable for their experimental observations.
Hence, a unique viscoelastic model consistent with the laws of
thermodynamics and with capabilities to address finite deforma-
tions, nonlinear viscosity and 3D implementation in a compact
form simultaneously is needed.

2. Materials and methods

Here, an isothermal deformation of soft tissues is considered.
Letters a;a, and A represent a scalar, a vector, and a second order
tensor, respectively. In particular, I is the second order identity ten-

sor, and AT represents the transpose of a tensor. The trace and devi-
atoric part of a second order tensor are trðAÞ ¼ I : A and
AD ¼ A� ð1=3ÞtrðAÞI, where the (:) represents the tensor scalar
product. The magnitude of a tensor is denoted by kAk ¼

ffiffiffiffiffiffiffiffiffiffiffi
A : A

p
.

Consider a soft tissue strip that has been transformed from its
undeformed reference configuration, X0, to a deformed current
configuration, X (Fig. 1a). Suppose, a point x ¼ f ðXÞ on the
deformed body in X corresponds to the point X in X0, then the
deformation gradient (F) is defined as:

Fij ¼ @xi
@Xj

ð1Þ

Using F, other important tensors in finite elasticity may be
introduced such as the right Cauchy-Green deformation tensor,
C ¼ FTF; left Cauchy-Green deformation tensor, B ¼ FFT ; Green
strain tensor, E ¼ 1=2ðC� IÞ; velocity gradient, L ¼ _FF�1; and rate
of deformation tensor, D ¼ 1=2ðLT þ LÞ, where the ( _�) represents
the material time derivative of a tensor.

Some important stress tensors are: Cauchy stress tensor, S; first
Piola-Kirchhoff (PK) stress tensor, P; and second PK stress tensor, T.
These tensors are related as: S ¼ ð1=detðFÞÞFTFT ;T ¼ PF�T . For a
detailed study about tensors and finite elasticity reader may refer
Holzapfel (2000).

2.1. Viscoelastic constitutive model

A thermodynamically consistent viscoelastic model suitable for
finite deformation was proposed by Huber and Tsakmakis (2000).
This model evolves from the concept of multiplicative decomposi-
tion of the deformation gradient and additive splitting of the total
strain energy function (also known as the internal variable method
(IVM), (Lubliner, 1985; Petiteau et al., 2013)). These decomposi-
tions can be defined as:

F ¼ FeFi ð2Þ
w ¼ wE þ wOE ð3Þ
where subscripts ‘i’ and ‘e’ indicate, respectively, the inelastic and
elastic parts of a tensor.

Following the same analogy, the deformation, strain and
velocity gradient tensors can also be decomposed into elastic and
inelastic parts. Using Eq. (2), the relations Ce ¼ FT

eFe;Ci ¼
FT
i Fi;Be ¼ FeF

T
e ;Bi ¼ FiF

T
i ; Le ¼ _FeF

�1
e , and Li ¼ _FiF

�1
i may be intro-

duced. Some useful relations between these decomposed tensors
are:

C ¼ FT
i CeFi ð4Þ

Be ¼ FC�1
i FT ð5Þ

L ¼ Le þ FeLiF
�1
e ð6Þ

In one-dimension (1D) this model may be thought of as a rheo-
logical model analogous to the SLS where both linear springs are
replaced with hyperelastic elements as shown in Fig. 1b. The
decomposed parts of total strain energy (see Eq. (3)) are associated
with the parallel and in-series hyperelastic elements, respectively.
The decomposition of F introduces an intermediate configuration
(Xi) in between the reference and the current configuration, as
shown in Fig. 1a, which would result when the stress is released
at an infinitely fast rate from the current configuration of the body
to a stress-free configuration. In Xi, the total strain (C), and its
decomposed elastic (Ce) and inelastic (Ci) parts take the form:

C ¼ F�T
i EF�1

i ð7Þ

Ce ¼ 1
2
ðCe � IÞ; Ci ¼ 1

2
ðI� B�1

i Þ ð8Þ

where a tensor operation is carried out in Eq. (7) to transform E
from X0 to Xi. An interesting feature to be noted is that similar to
the 1D SLS model, the total strain tensor in Xi decomposes addi-
tively into elastic and inelastic parts, i.e., C ¼ Ce þ Ci. Using Eqs.
(2) and (7) the strain rate in Xi can be written as:

C
4
¼ _Cþ LT

i Cþ CLi ¼ F�T
i

_EF�1
i ¼ FT

eDFe ð9Þ

where C
4

is the covariant rate of strain tensor. Now, the rate of
change of the strain energy functions can be derived as:

d
dt

wEðEÞ� � ¼ @wE

@E
: _E ¼ @wE

@E
: FT

i C
4
Fi

� �
¼ Fi

@wE

@E
FT
i

 !
: C
4

ð10Þ

d
dt

wOEðCeÞ
� � ¼ @wOE

@Ce
: _Ce ¼ @wOE

@Ce
: C
4
�Ce

@wOE

@Ce
: Li ð11Þ

The second law of thermodynamics states that the total produc-
tion of entropy per unit time is non-negative for all thermody-
namic processes (Holzapfel, 2000). For a purely mechanical
system in 3D, the second law of thermodynamics takes the form:

S : D� _w P 0 ð12Þ

Fig. 1. (a) Motion of a continuum body in a viscoelastic framework and the
decomposition of deformation gradient, F, into an elastic, Fe , and an inelastic, Fi ,
part, respectively. (b) One-dimensional representation of the finite viscoelastic
model. The total strain, �, of the system is decomposed into elastic (�e) and inelastic
(�i) parts linked with the in-series hyperelastic element and the dashpot,
respectively.
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