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a b s t r a c t

The choice of the cost-function for predicting muscle forces during a movement remains a challenge,
especially in patients with neuromuscular disorders. Forward dynamics-based optimisations mainly
track joint kinematics or torques, combined with a least-excitation criterion. Tracking marker trajectories
and/or electromyography (EMG) has rarely been proposed. Our objective was to determine the best
tracking objective-function to accurately predict the upper-limb muscle forces. A musculoskeletal model
was created and EMG was simulated to obtain a reference movement – a shoulder abduction. A Gaussian
noise (mean = 0; standard deviation = 15%) was added to the simulated EMG. Another noise – corre-
sponding to the actual soft tissue artefacts (STA) of experimental shoulder abduction movements –
was added to the trajectories of the markers placed on the model. Muscle forces were estimated from
these noisy data, using forward dynamics assisted by six non-linear least-squared objective-functions.
These functions involved the tracking of marker trajectories, joint angles or torques, with and without
EMG-tracking. All six approaches used the same musculoskeletal model and were solved using a direct
multiple shooting algorithm. Finally, the predicted joint angles, muscle forces and activations were com-
pared to the reference values, using root-mean-square errors (RMSe) and biases. The force RMSe of the
approach tracking both marker trajectories and EMG (18.45 ± 12.60 N) was almost five times lower than
the one of the approach tracking only joint angles (82.37 ± 66.26 N) or torques (85.10 ± 116.40 N).
Therefore, using EMG as a complementary tracking-data in forward dynamics seems to be promising
for the estimation of muscle forces.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Muscle forces quantification through musculoskeletal modeling
might be beneficial to improve the design and evaluation of thera-
peutic programs. A better understanding of the co-contraction
mechanisms into the muscle force-sharing problem would bring
non-negligible clinical insights (Dao, 2016), especially in patients
with neuromuscular disorders. Because of the musculoskeletal
redundancy, an infinity of muscle activation patterns can produce
the same movement (Buchanan and Shreeve, 1996). Optimisation
approaches are therefore used to provide a unique solution; how-
ever, the nature of the objective-function remains a challenge.

In the literature, dynamic optimisation is widely acknowledged
for considering the time-dependent nature of the muscles
(Ackermann and Schiehlen, 2009; Engelhardt et al., 2015;
Morrow et al., 2014). Based on a forward approach, dynamic opti-
misation accounts for activation dynamics and is mostly assisted
by data tracking to find the optimal controls driving the biome-
chanical model (Ackermann and Schiehlen, 2009; Pandy, 2001).
Dynamic optimisation is often criticized for being time-
consuming; convergence times up to hundreds of hours are
reported in some studies (Ackermann and Schiehlen, 2009;
Menegaldo et al., 2006; Neptune, 1999; Pandy, 2001). Hence,
state-of-the-art algorithms like direct collocation (Diehl et al.,
2006; von Stryk and Bulirsch, 1992) and direct multiple shooting
algorithms (Leineweber et al., 2003; Mombaur et al., 2010;
Spagele et al., 1999) could be used to solve forward problems in
a timely manner.
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In dynamic optimisation, joint kinematics is commonly tracked
by minimizing the difference between experimental and predicted
data through the objective-function (Neptune et al., 2001, 2004).
Since musculoskeletal models are based on a kinematic chain,
tracking-errors at the proximal joints will theoretically propagate
to the distal segment positions. Tracking marker trajectories
instead of joint kinematics could limit such error propagation.

Another type of forward dynamics-based optimisation – termed
as ‘hybrid’ or forward-muscular inverse-skeletal optimisation (Lloyd
and Besier, 2003; Shourijeh et al., 2016) – was recently introduced.
It combines an inverse-dynamic approach with a forward work-
flow (Lloyd and Besier, 2003; Sartori et al., 2014; Shourijeh et al.,
2016). However, due to the so-called ‘soft tissue artefacts’ (STA)
and, above all, the successive derivations, the joint torques may
be noisy (Pandy, 2001). Then, the use of an extended Kalman filter
– including up to the accelerations in the state variables – may par-
tially solve this problem (Fohanno et al., 2014).

In the literature, the tracking functions of dynamic or hybrid
optimisations are commonly combined with a least-activation/
excitation criterion (Chumanov et al., 2007; Sartori et al., 2014;
Thelen and Anderson, 2006). However, such a criterion does not
reflect the muscle co-contraction and may not provide physiologi-
cal results (Cholewicki et al., 1995; Gagnon et al., 2001). This is par-
ticularly true in some pathological cases, like children with
cerebral palsy, because spasticity increases muscle co-contraction
(Sarcher et al., 2015, 2017). Thus, such approach should not be rec-
ommended for studying goal-directed upper-limb movements
implying complex muscle coordination (Morrow et al., 2014).
Instead of minimizing muscle excitations, tracking electromyogra-
phy (EMG) – a direct measurement of muscular activity – may
address this limitation.

In this paper, we hypothesized that tracking both EMG and
marker trajectories would improve the muscle forces realism.
Our objective was to determine which kind of data should be
tracked when using forward-dynamic optimisation to accurately
predict muscle forces in case of pathological co-contraction.

2. Methods

2.1. Upper-limb musculoskeletal model

A 3D upper-limb model was created from a custom-made mod-
eling package (S2M Dynamic Library) adapted from the Rigid Body
Dynamic Library (Felis, 2011). Three rigid segments were articu-
lated by two joints, namely: the glenohumeral (3 DOFs: elevation,
plane of elevation, axial rotation) and elbow (1 DOF: flexion/exten-
sion) (Fig. 1). A total of eight markers – four on the arm (M1–M4)
and lower-arm (M5–M8) – were placed on the right upper-limb.

The geometry and properties of the bones and 18 Hill-type lines
of action included in the model were implemented into the S2M
Dynamic Library, according to the generic musculoskeletal model
of Holzbaur et al. (2005) available in OpenSim. They were actuated
by generic force-length, force-velocity and parallel passive elastic
force-length relationships (Zajac, 1989). Activation dynamics was
implemented as described in Appendix.

2.2. STA-noise extraction and joint kinematics

Joint kinematics and skin marker STA were obtained from the
experimental protocol described in Begon et al. (2015). Briefly,
markers were placed on skin and on intracortical-pin clusters
screwed in the left humerus of four healthy participants (Begon
et al., 2015). A skeletal model was then created and joint kinemat-
ics was reconstructed from both skin and intracortical-pin markers
(Begon et al., 2015; Laitenberger et al., 2015). The 3D displacement

of the skin markers expressed in the bone system-of-coordinates
corresponded to the STA.

In the present study, shoulder abductions from the anatomical
position performed by one subject (27 years; 1.65 m; 57 kg) were
analysed. For each of the three repetitions of the movement, the
STA-noise was extracted. As no pin was screwed into the subject’s
lower-arm, the calculated noise was smaller for the four markers
placed on this segment. The corresponding joint kinematics was
then smoothed using a Fourier interpolation on MATLAB (Math-
works, Nantucket, MA). The experimental joint angles matching
the DOFs of our right upper-limb model were kept, while the
others were ignored.

2.3. Simulated muscle excitations

Since no EMG data were recorded in combination with the pin
and skin markers trajectories in the previous work of Begon et al.
(2015), EMG (also termed as muscle excitations) was simulated
for each repetition of the movement, using a forward approach.
The optimal control problem was solved with a direct multiple
shooting algorithm implemented into the MUSCOD-II software
(Leineweber et al., 2003) (Appendix). The movement duration
was 2 s. Controls were muscle excitations; states were joint angles,
velocities and muscle activations. Controls were discretized into a
piecewise-constant representation on a 51-node grid (Mombaur
et al., 2010); they were optimised, so that the experimental joint
angles were strictly reproduced. Estimated joint angles, velocities
and muscle activations were obtained as output.

First, the redundancy of the musculoskeletal model was
assessed by calculating a viable control space, using 200 random
controls initial guesses without objective-function (Fig. A1 in
Fig. A1 in Appendix). Second, the reference excitations were
obtained, with enforced levels of co-contraction to reproduce the
magnitude of those observed in cerebral palsy patients (Sarcher
et al., 2015, 2017). Similar to previous studies modeling the EMG
signal (Farina and Merletti, 2000; Zardoshti-Kermani et al., 1995),
a zero-mean Gaussian noise (standard deviation = 15%) was finally
added to the optimised excitations to mimic the measurement
errors observed with real data (Chowdhury et al., 2013). This noise

Fig. 1. Anterior (A) and posterior (B) views of the right upper-limb musculoskeletal
model from the S2M Dynamic Library. Colored lines and dark-circled dots represent
the 18 Hill-type muscle lines of action and the 8 markers, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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