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a b s t r a c t 

Nonlinear finite element (FE) modeling can be a powerful tool for studying femoral fracture. However, 

there remains little consensus in the literature regarding the choice of material model and failure crite- 

rion. Quasi-brittle models recently have been used with some success, but spurious mesh sensitivity re- 

mains a concern. The purpose of this study was to implement and validate a new model using a custom 

finite element designed to mitigate mesh sensitivity problems. Six specimen-specific FE models of the 

proximal femur were generated from quantitative tomographic (qCT) scans of cadaveric specimens. Ma- 

terial properties were assigned a-priori based on average qCT intensities at element locations. Specimens 

were experimentally tested to failure in a stumbling load configuration, and the results were compared 

to FE model predictions. There was a strong linear relationship between FE predicted and experimentally 

measured fracture load ( R 2 = 0.79), and error was less than 14% over all cases. In all six specimens, sur- 

face damage was observed at sites predicted by the FE model. Comparison of qCT scans before and after 

experimental failure showed damage to underlying trabecular bone, also consistent with FE predictions. 

In summary, the model accurately predicted fracture load and pattern, and may be a powerful tool in 

future studies. 

© 2018 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Osteoporosis is a significant source of morbidity and mortal- 

ity, particularly among the elderly [1,2] . To develop effective in- 

tervention strategies for the prevention of osteoporotic fractures, 

it is necessary to identify individuals who are most at risk. This 

can be challenging, as the likelihood of suffering a fracture is de- 

pendent on a number of factors including bone strength, the likeli- 

hood of suffering a fall, and the severity of the fall. Finite element 

(FE) modeling can be a powerful tool to help further understand 

some of these factors. 

Linear FE models are computationally inexpensive, and com- 

monly used [3–6] . Linear models treat bone as a linear elastic solid, 

and failure is assumed to occur after a certain number of elements 

exceed the selected failure criterion. These models are able to ac- 

curately predict strains at low loads [7] , and achieve strong correla- 

tions between FE predicted and experimentally determined failure 

load ( R 2 > 0.77). Despite the strength of correlation, however, error 

magnitudes can remain quite large; some studies show that indi- 

vidual specimens have differences of up to 45% between predicted 
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and experimentally measured fracture loads [4,6] . To achieve bet- 

ter results, some FE studies incorporate nonlinear material proper- 

ties. In these studies, bone elements behave linear-elastically until 

a failure a condition is met, at which point the element’s proper- 

ties are degraded, i.e. , the stiffness and/or stress in the element 

is adjusted to account for localized failure of the bone material 

[8–11] . However, there is currently little consensus regarding the 

best material model and failure criterion to use for modeling fail- 

ure of the proximal femur. 

Some very recent studies [12,13] have had success using a 

quasi-brittle damage model, where stiffness of elements degrades 

gradually as strain increases, and the crack is modeled as the re- 

gion of elements whose stiffness has been reduced to near zero. 

While the technique is powerful, there are important challenges 

that need to be addressed. FE models that include strain softening 

behavior have well documented issues with spurious mesh sensi- 

tivity [14,15] . The size of the damaged region corresponds to the 

size of the mesh used to solve the problem. As the mesh is refined, 

the size of the damaged region, and thus the energy dissipated, 

shrinks. This is a physically inadmissible result; the energy dissi- 

pated by crack formation is a property of the material and should 

not be dependent on mesh size [14,15] . 

To remedy this issue, some authors have proposed using a non- 

local constitutive model. For example, damage evolution can be 

driven by a weighted spatial averaging of strains near a point, 
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rather than the local strain at the point itself. This technique has 

been used successfully for simulations of vertebral bone [16] , but is 

computationally expensive to implement within a conventional fi- 

nite element solver. As an alternative, gradient-dependent descrip- 

tions have recently gained interest. Using Taylor series expansions, 

these models approximate the nonlocal parameter as the solution 

to a differential equation which can be evaluated locally [17] . This 

equation can be easily coupled to the equation of equilibrium and 

solved using the finite element method. 

While this method has been used successfully in the past to 

model failures in quasi-brittle engineering materials [18] , to the 

best of the author’s knowledge, it has not been used to study 

bone fracture at the organ level. Thus, the purpose of this study is 

to develop specimen-specific finite element models of the femur, 

simulate fracture using a gradient-enhanced quasi-brittle damage 

model, and validate the predicted fracture load and fracture pat- 

tern through experimental testing. 

2. Methods 

2.1. The nonlocal model 

Formulation of the nonlocal model, and its implementation us- 

ing finite elements, was derived in detail by Peerlings et al. [18] , 

but is summarized here for the reader’s convenience. In a quasi- 

brittle material, stress at a point is a function of both strain and 

the state of damage: 

σ = ( 1 − D ) C ε (1) 

where C is the stiffness tensor for the undamaged material, D is 

the damage parameter, σ is the stress tensor and ε is the strain 

tensor . The state of damage is related to the loading history; most 

typically, damage is related to a scalar measure of deformation, 

known as equivalent strain εeq , computed from components of the 

strain tensor. In a nonlocal model, damage is related to a weighted 

volume average of equivalent strains, computed from: 

ε eq 
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x 
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where ε eq ( 
⇀ 

x ) is the nonlocal equivalent strain at point 
⇀ 

x , 
⇀ 

ε is an 

integration variable, and g( 
⇀ 

ε) is the weighting function. Unfortu- 

nately, Eq. (2 ) is difficult to implement in a traditional finite ele- 

ment solver. However, by manipulating the Taylor series expansion 

of Eq. (2 ), Peerlings et al. [18] showed that the nonlocal strain can 

be approximated using a differential equation: 

ε eq − c ∇ 

2 ε eq = ε eq (3) 

where c is related to the nonlocal interaction radius [17] , and has 

units of length squared. Eq. (3 ) is significantly easier to implement 

and solve using the finite element method. 

2.2. The finite element implementation 

The custom finite element used in this study simultaneously 

solves the equation for nonlocal strain ( Eq. 3 ) alongside the famil- 

iar equation of static equilibrium with body forces neglected: 

∇ · σ = 0 (4) 

Coupling between Eq. (3 ) and Eq. (4 ) occurs due to the fact that 

stress σ is related to damage, from the constitutive law ( Eq. 1 ), 

and damage evolution is computed from nonlocal strains. To solve 

this system of equations, the unknown fields of displacement ( u) 

and nonlocal strain ( ε eq ) are discretized using two sets of standard 

finite element shape functions N u and N ε : 

u = N u Ū (5) 

ε eq = N ε ε̄ (6) 

where Ū and ε̄ are vectors containing the nodal values of dis- 

placement and nonlocal equivalent strain, respectively. Analogous 

to the derivation of a more standard continuum finite element, 

divergence theorem is used to manipulate Eq. (4 ) into the weak 

form. Substitution of Eq. (5 ) then results in the familiar finite ele- 

ment equations: 

f int 
u = f ext 

u (7) 

f int 
u = 

∫ 
( B u ) 

T σ d� (8) 

f ext 
u = 

∫ 
( N u ) 

T p d� (9) 

where p is the vector of external nodal forces acting on the body. 

The matrix B u is assembled from derivatives of the shape functions 

N u , and describes the strain–displacement relationship. Similarly, 

casting the differential equation for nonlocal strain into the weak 

form, and substituting the discretization Eq. (6 ), yields: 

K εε Ē = f e (10) 

Where: 

K εε = 

∫ 
N ε 

T N ε + B ε 
T c B ε d� (11) 

f e = 

∫ 
N ε 

T ε eq d� (12) 

Similar to Eq. (8 ), the matrix B ε is assembled from derivatives 

of the shape functions N ε . Damage evolution causes nonlinearity, 

and so Eqs. (7) and (10) are linearized then solved by Newton–

Raphson iterations. For a given set of estimated solution variables 

U i and Ē i estimated at iteration i , the updates U i +1 = U i + � Ū and 

Ē i +1 = Ē i + � Ē are computed from: [
K uu K uε 

K εu K εε 

]{
�U i 

�ε̄ i 

}
= 
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f ext 
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εε ε i 

}
(13) 

Where: 

K uu = 

∫ 
B u 

T ( 1 − D ) C B u d� (14) 

K uε = −
∫ 

B u 
T C ε q d� (15) 

K εu = 

∫ 
N ε 

T 

(
∂ ε eq 

∂ε 

)T 

B u d� (16) 

K εε = 

∫ 
N ε 

T N ε + B ε 
T c B ε d� (17) 

The term q = 

∂D 
∂ ε eq 

if equivalent strain is increasing, and zero 

otherwise; this prevents the model from reversing damage if strain 

decreases. Eq. (13 ) can be solved with commercially available non- 

linear finite element solvers. For this study, the equation was im- 

plemented as a custom element in the finite element package 

ABAQUS, using the user subroutine UEL. 

2.3. Specimen specific modeling 

Six specimen-specific models were developed from fresh-frozen 

cadaveric femurs obtained from the University of Ottawa’s division 

of clinical and functional anatomy, after approval from their re- 

search ethics board . Three were male (ages 60,64,88) and three 

were female (ages 82, 88, 68). Three-dimensional FE models of the 
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