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a b s t r a c t 

Up to 40% of patients treated for rectal cancer suffer from therapy-related symptoms. Innervation injury 

is one of the suggested pathomechanisms of those symptoms hence the development of a valid, non- 

invasive tool for the assessment of neural systems is crucial. The aim of this work is to study the fractal 

properties of the surface electromyography signals obtained from patients suffering from rectal cancer. 

The anal sphincter activity was investigated for the group of 15 patients who underwent surgical treat- 

ment. Multifractal detrended fluctuation analysis was implemented to analyze the data, obtained at four 

different stages: one before treatment and three times after the surgery. The results from the standard 

detrended fluctuation analysis and empirical mode decomposition methods are presented and compared. 

The statistically significant differences between the stages of treatment were identified for the selected 

spectral parameters: width and maximum of the spectrum. 

© 2018 IPEM. Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Over last few decades, surface electromyography (sEMG), due to 

its non-invasive characteristics, has gained a wide range of applica- 

tions for neuromuscular systems. This work is focused on an appli- 

cation of the sEMG concerning the diagnosis of the anal sphincter 

of the patients suffering from rectal cancer [1,2] . Rectal cancer re- 

mains to be one of the most frequent cancers in humans [3] . It 

requires complex multimodal treatment composed of surgery, irra- 

diation and chemotherapy. All of those methods can cause signifi- 

cant stool continence-related problems hence proper assessment of 

anorectal innervation before and after the treatment can be crucial 

for the prevention and treatment of complications. The diagnos- 

tics of innervation of the anal sphincter is undeniably a central is- 

sue for the evaluation of treatment progress but there is still no 

practical diagnostic test whose usefulness is scientifically proven. 

sEMG enables non-invasive monitoring of the anal sphincter func- 

tion [4–6] and is a very promising method of testing of innervation 

of muscles. 

Regardless of the application, sEMG always represents highly 

complex signals with a low signal to noise ratio [7] . The nonlin- 

earity of sEMG data has been investigated in recent years [8] and 
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great effort has been devoted to the application of variety of non- 

linear methods. Traditional analysis, mainly based on the conven- 

tional statistical tests of mean, median or frequency components 

brings only limited knowledge on the actual process hidden be- 

hind the acquired data [9] . 

In recent years there has been a growing interest in the frac- 

tal properties of physiological data and also in the context of 

sEMG signals [10–12] . This work proposes the application of modi- 

fied Multifractal Detrended Fluctuation Analysis (MFDFA) based on 

Empirical Mode Decomposition (EMD) to the sEMG signals. The 

EMD and MFDFA techniques can be used to trace out the features 

of non-linear and non-stationary signals. Moreover, both methods 

have a broad spectrum of applications individually. MFDFA, intro- 

duced by Halsey et al. [13] and developed later by Kantelhardt 

et al. [14] has been used in many disciplines and still attracts con- 

siderable attention in the field of physiology, economics, climatol- 

ogy, to name but a few. In relation to electrophysiological signals, 

MFDFA brought a significant contribution to the analysis of heart 

rate variability [15,16] . For Empirical Mode Decomposition (EMD) 

an equally wide range of applications can be found such as the re- 

moval of artifacts and noise reduction from the signals [17] . EMD 

also exhibits better results in the process of detrending in compari- 

son, for example, with the typically used least square method [18] . 

This aspect has been used in the modified detrending algorithm 

which is presented in this paper. The use of the EMD method in 

the context of detrending operations results in a more accurate 
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trend which is not predetermined and therefore is closely related 

to the nature of real data [19] . Moreover, it is documented in the 

literature that this approach outperforms standard MFDFA for large 

fluctuations [20] . 

2. Method 

2.1. Detrended Fluctuation Analysis (DFA) 

The DFA method was first proposed by Peng in 1994 for inves- 

tigating the correlation in DNA structure [21] . Recent years have 

seen a renewed importance in the application of this method to 

biological data and also for distinguishing healthy and pathological 

states [22] . The basic idea of this technique relies on the assump- 

tion that the signal is influenced by the short-term and long-term 

features. For the proper interpretation of effects hidden behind in- 

ternal dynamics the signal is analyzed at multiple scales [23] . The 

brief description of the original DFA algorithm is presented below. 

The procedure starts with the calculation of the profile y i as the 

cumulative sum of the data x i with the subtracted mean 〈 x 〉 : 

y i = 

i ∑ 

k =1 

[ x k − 〈 x 〉 ] (1) 

Next, the cumulative signal y i is split into N s equal non- 

overlapping segments of size s . Here for the length s of the seg- 

ments we use powers of two, s = 2 r , r = 4 . . . 11 . For all segments 

v = 1 , . . . , N s the local trend y m 

v ,i is calculated. In a standard DFA 

method, the trend is calculated by means of the least-square fit of 

order m . In this work m = 2 was used. The variance F 2 as a func- 

tion of the segment length s is calculated for each segment v sep- 

arately. 

F 2 (s, v ) ≡ 1 

s 

s ∑ 

i =1 

(
y m 

v ,i − y v ,i 
)2 

. (2) 

For the last step, the Hurst scaling exponent H is calculated as 

the slope of the regression line of double-logarithmic dependence, 

log F ∼ H log s . 

2.2. Empirical Mode Decomposition (EMD) 

The EMD is an iterative technique which decomposes the signal 

x(t) into a finite number of Intrinsic Mode Functions (IMFs) c i ( t ) 

and final residual signal r n ( t ) 

x (t) = 

n ∑ 

i =1 

c i (t) + r n (t) . (3) 

The latter can be interpreted as an actual trend. The calculated sig- 

nal must satisfy two conditions in order to be an IMF: (i) the num- 

ber of extrema and the number of zero crossings must be equal to 

or differ at most by one; and (ii) the mean value of the upper and 

lower envelope defined by local maxima and minima must be zero. 

The standard EMD method often faces some difficulties, which are 

recurrently the consequence of signal intermittency referred to as 

the Mode-Mixing problem. Ensemble Empirical Mode Decomposi- 

tion (EEMD) [24] and more recent Complete Ensemble Empirical 

Mode Decomposition (CEEMD) [25] have been proposed in order 

to overcome this complication. Both methods are based on the av- 

eraging over several realizations of Gaussian white noise artificially 

added to the original signal. For this work however, we use only 

standard EMD due to the fact that only residual r n , i.e. the data 

trend, is needed for further calculations and none of the individual 

IMFs is considered here explicitly. 

Figure 1. Two detrending methods: DFA (solid black) and EMD (solid red) are pre- 

sented for the profile y i of the sEMG example data (dashed blue). (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

2.3. EMD based DFA 

The analysis is now branched into a standard DFA algorithm 

and non-standard based on EMD techniques. The former method 

uses the least-square estimation of the order m . The latter utilizes 

the fact that the residual r n (3) represents the local trend, thus the 

standard polynomial fit (DFA) can be replaced by a residuum for 

each segment [26] . An example of local trends calculated with both 

methods is presented in Figure 1 for the segment size s = 64 . The 

slight differences between solid black and red lines, which repre- 

sent DFA and EMD methods respectively, influence the further re- 

sults. 

2.4. MFDFA 

MFDFA is based on the scaling properties of the fluctuations. 

The brief description of the method is presented below, however, 

for detailed specification we suggest works by Kantelhardt et al. 

[14,27] , Ihlen [28] or Salat et al. [29] . In order to extend the 

monofractal DFA (2.1) to the multifractal DFA it is necessary to in- 

dicate the q th statistical moment of the calculated variance (2) . 

F q (s ) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

( 

1 

2 N s 

2 N s ∑ 

v =1 

[ F 2 (s, v )] 
q 
2 

) 

1 
q 

, q � = 0 , 

exp 

{ 

1 

4 N s 

2 N s ∑ 

v =1 

ln 

[
F 2 (s, v ) 

]} 

, q = 0 . 

(4) 

Next, the determination of the scaling law F q ( s ) ∼ s h ( q ) of the 

fluctuation function (4) is performed with the use of the log–log 

dependencies of F q ( s ) versus segment sizes s for all values of q 

separately. The q -order Hurst exponent h ( q ) is required in order 

to calculate further dependencies. The mass exponent is obtained 

via the formula 

τ (q ) = qh (q ) − 1 . (5) 

It is then used to calculate a q -order singularity Hölder exponent 

α = τ ′ (q ) where the prime means differentiation with respect to 

the argument. In turn, the q -order singularity dimension can be 

constructed 

f (α) = qα − τ (q ) = q [ α − h (q )] + 1 . (6) 

The singularity dimension f ( α) is related to the mass exponent τ ( q ) 

by a Legendre transform. The multifractal spectrum, i.e. the depen- 

dence f ( α) vs α is the final result of MFDFA method. 

The mf-spectrum describes how often the irregularities of cer- 

tain degrees occur in the signal. f ( α) represent q -order singularity 
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