1st IFAC Workshop on Dependable Control of Discrete Systems (DCDS'07)
ENS Cachan, France - June 13-15, 2007

OPTIMAL DISCRETE CONTROLLER SYNTHESIS
FOR MODELING FAULT-TOLERANT DISTRIBUTED SYSTEMS

E. Dumitrescu ! A. Girault 2 H. Marchand 3 E.Rutten *

Abstract: We propose a safe design method for safe execution systems, based on fault-
tolerance techniques: it uses optimal discrete controller synthesis (DCS) to generate a
correct-by-construction fault-tolerant system. The properties enforced concern consistent
execution, functionality fulfillment (whatever the faults, under some failure hypothesis),
and several optimizations (of the tasks’ execution time). We propose an algorithm for
optimal DCS on bounded paths. We propose model patterns for a set of periodic tasks
with checkpoints, a set of distributed, heterogeneous and fail-silent processors, and
an environment model that expresses potential fault patterns. The implementation is
illustrated using the Sigali symbolic DCS tool and the Mode Automata programming
language. Copyright (©2007 IFAC

Keywords: Optimal discrete controller synthesis, fault-tolerance, checkpointing, reactive

systems, embedded systems.

1. MOTIVATION

Reactive systems must respond continuously to their
environment, at a speed imposed by the latter. This
property imposes a real-time constraint: the environ-
ment sends stimuli to the system, to which it must
react before the next stimuli. In safety critical systems,
this constraint is strict, and hence it must be guaran-
teed on the implementation. We wish to design multi-
task multi-processor reactive systems. As processors
are subject to failures, we make sure that our systems
are fault-tolerant (safety critical constraint). We also
guarantee that they react within some fixed temporal
bound (real-time constraint). Our proposal is to use
discrete controller synthesis (DCS) to obtain automat-
ically a controlled system that guarantees its fault-
tolerant and real-time constraints by construction.

We represent a system by its behavior in terms of start-
ing and reconfiguring lower-level computations [Al-
tisen et al. (2003)]. Each computation is represented
as a periodic task, whose period matches the reaction
time imposed by the environment. Each task is itself
decomposed into several successive phases, separated

1 INSA-Lyon, http://www.insa-lyon.fr, emil.
dumitrescu@insa-lyon. fr

2 INRIA, LIG, http://pop-art.inrialpes.fr/
~girault,Alain.Girault@inria.fr

3 INRIA, IRISA, http://www.irisa.fr/prive/
hmarchan, Herve.Marchand@inria. fr

4 INRIA, LIG, http://pop-art.inrialpes.fr/
~rutten,Eric.Rutten@inria.fr

by a checkpoint. A reconfiguration of the system con-
sists in migrating one or several tasks onto another
processor. This must be done, in particular, each time
a processor failure occurs. When doing so, the task
rolls-back to its last checkpoint.

The major advantage of using DCS for fault-tolerance
is that, if DCS succeeds, then the resulting controlled
system will dynamically reconfigure itself upon the
occurrence of a failure, while being guaranteed by
construction that it satisfies its real-time constraints
whatever the failures.

This paper builds up upon previous results where DCS
was applied with objectives of invariance, cost bound-
ing, and one-step optimal DCS [Girault and Rutten
(2004)]. Here, we have a richer task model with
phases and checkpoints, and we apply optimal DCS
on finite paths. To achieve this, we propose a variant of
the classical optimal DCS algorithm of Bellman [Bell-
man (1957)] in order to cope with path having waiting
loops, as it occurs with reactive systems.

In the remainder, we first describe our model of dis-
tributed systems with faults, then we describe our DCS
technique for fault-tolerance, and particularly optimal
DCS on paths dealing with self-loops encountered in
reactive systems. Next we define fault tolerance in
terms of properties on the model, which are used as
objectives for DCS, and lead to the automatic deriva-
tion of a controller for fault tolerance.

2. DCS ALGORITHMS AND MODELS

We adopt an existing DCS framework [Marchand et al.
(2000)] and propose a modeling methodology. Thus
we only introduce the useful definitions or technical
aspects of the tools, and summarize the functionality.

2.1 Labeled transition systems (LTS)

Formally, an LTS is a tuple (Q, qo,Z, O, 6), where Q
is a finite set of states, qq is the initial state, 7 is a finite
set of input signals (produced by the environment), O
is a finite set of output signals (issued to the environ-
ment), and ¢ is the transition function, i.e., a mapping
from Q x Bool(Z) x O* — x Q. Each transition has
a label of the form g/a, where g € Bool(Z) must be
true for the transition to be taken (g is the guard of the
transition), while ¢ € O™ is a conjunction of outputs
that are issued when the transition is taken (a is the
action of the transition). A transition (s, g, a, s") will

be graphically noted s 9lg s'. We use this level of
definition for our modelling work, in a graphical form
in the Figures of this paper. A path is a sequence (pos-
sibly infinite) of transitions starting from the initial
state qo. In this paper, we only focus on LTSs which
are deterministic and reactive:

e determinism guarantees that the system always
reacts in the same manner to the same sequence
of input events;

e reactivity guarantees sensitivity to any event feed
from its environment.

Two LTSs <Q1; q0171-13 Ola 51> and <Q2; q0271-23 OQ; 52>

are said to be compatible only if their output sets are
disjoint O1 N Oy = (). The synchronous product be-
tween two compatible LTSs (91, qo1,Z1, O1,d1) and
(Q2,q02,Z2, 03, 62) is the LTS (Q1 x g, (qo1, q02),
Z1UZy, 01 U0, 01 X 52>

2.2 Discrete controller synthesis (DCS)

DCS emerged in the 80’s [Ramadge and Wonham
(1987)], with foundations in language theory. Its pur-
pose is, given two languages P and D, to obtain a third
language C such that P N C C D. This is a kind of
inversion problem, since one wants to find C from D
and P. Here, P is called the plant, D the desired sys-
tem or objective, and C the controller. Several teams
proposed extensions and applications of this language
theory technique to labeled transition systems (LTS).

In our approach, P is specified as a LTS, and D is
an objective to be satisfied by the controlled system,
typically making a subset of states invariant in the
controlled system, or keeping it always reachable.
The controller C obtained with DCS is a constraint
restricting the transitions of P, i.e., inhibiting those
that would jeopardize the objective. The key point
is that the set of inputs Z is partitioned into two
subsets, Z. and Z,,, respectively the set of controllable
and uncontrollable inputs. The controller C can only
inhibit those transitions of P for which the guard
contains at least one controllable signal, i.e., in Z..

system

Zc system j 1 e
I
:
! controller

Fig. 1. From uncontrolled system (left) to closed-loop
control (right)

As illustrated in Figure 1, the objective is expressed
in terms of the system’s outputs. The controller is
obtained automatically from a user specified LTS and
objective, according to [Marchand et al. (2000)].

2.3 Optimal discrete controller synthesis

It is also possible to consider weights assigned to
the states and/or inputs/outputs of P, and to spec-
ify that some upper or lower bound must never be
reached. Optimal DCS [Kumar and Garg (1995);
Tronci (1996); Sengupta and Lafortune (1998); Marc-
hand and Samaan (2000)] can then be used to control
transitions so as to minimize/maximize, in one step,
some function w.r.t. these weights; i.e., go only to
next states with optimal weight [Girault and Rutten
(2004)].

In this paper, the problem of finding an optimal strat-
egy on a path is considered. For a system M together
with a complete cost function C, the optimal strategy
leads M from its initial state gy to some final states
Q. The execution path E which is followed from g
to g¢ € Q¢ must have the lowest execution cost that
can be guaranteed. Indeed, if one or more minimal
cost paths exist, it cannot be guaranteed that they are
systematically followed. Uncontrollable events might
drive the system into “bad” cost states such that a
global minimum is not reached.

In terms of the concrete transition systems seen previ-
ously, we define C(q) be a cost function mapping each
potential state of an LTS to a strictly positive integer
cost: C': Q@ — N. The execution cost EC of a path of
length k starting at state q1, F(q1) = (q1,...,qx) is
obtained by adding the static costs of the states in E.

Bellman’s algorithm [Bellman (1957)] takes into ac-
count this aspect. It operates following two steps. At
the first step, each state g of the transition system M
is mapped to the best execution cost achievable to
reach ()¢, by taking into account the worse-case of
uncontrolable inputs. Note that this cost value is not
necessarily the minimal execution cost achievable. If
such an execution path does not exist, then the best
cost achievable equals +o0o. Let W : BP — N be the
mapping function. W is defined as the greatest fixed
point of the following recurrent equations:

0 iff € Q
0 _ f
Wie) = { +o00 otherwise

. [W)
W'(q) = mln{ max min C(q) + W (8(q, iu, ic))

u c

Download English Version:

https://daneshyari.com/en/article/723941

Download Persian Version:

https://daneshyari.com/article/723941

Daneshyari.com

https://daneshyari.com/en/article/723941
https://daneshyari.com/article/723941
https://daneshyari.com

