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Abstract: Measurement of the key process variables is essential during biopharmaceutical 
production. These measurements are often not available online. This work combines 
frequent online measurements with infrequent offline measurements to estimate the 
specific growth rate, biomass, and the oxygen mass transfer coefficient during continuous 
and fed-batch cultivations of Bordetella pertussis online using an Extended Kalman 
filter, parameter adaptation, and learning. Copyright © 2007 IFAC
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1. INTRODUCTION 

Most biopharmaceuticals are produced in a batch or 
fed-batch cultivation. The quality of the product is 
formed in this step and is the result of the metabolic 
state of the micro-organisms. It is therefore essential 
to measure the physiological state of the process. 
Metabolic activity is difficult to measure directly due 
to the lack of sensors, but respiration can be 
monitored by the oxygen mass balance. The oxygen 
uptake rate can in turn be used to estimate the specific 
growth rate and biomass. The specific growth rate 
and biomass concentration are key parameters that 
define the metabolic state of micro-organisms. 

In this application only dissolved oxygen 
measurements were available. Therefore, a software 
sensor based on an Extended Kalman filter (EKF) 
was developed to estimate specific growth rate and 

biomass every minute using the oxygen uptake rate 
(OUR) as input. The choice for an EKF is in line with 
the process, in which the instruments and the 
measurement noise are known.  

In bioreactors, aerated by a high air flow entering the 
headspace, the difference between the inlet and 
exhaust oxygen fraction is small and can therefore not 
be measured accurately. Hence OUR must be 
calculated using the oxygen balance in the liquid 
phase (Neeleman, 2002, Soons et al., 2006, 2006a): 
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Where kLa is the oxygen transfer coefficient. The 
dissolved oxygen concentration ( L

OC ) is assumed to 
be at pseudo-steady state i.e. accumulation of oxygen 
in the bioreactor is negligible. The oxygen 
concentration entering the bioreactor ( in

OC ) is 
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assumed to be equal to the liquid phase oxygen 
concentration in equilibrium with the gas phase in the 
headspace.  

In most applications, the oxygen transfer rate kLa is 
measured in advance of the cultivation in medium and 
is assumed to depend on stirrer speed and volume 
only. However, the formation of cells, proteins, and 
other molecules, which absorb at gas-liquid 
interfaces, cause interfacial blanketing and reduce the 
oxygen transfer rate (Doran, 1995). Because 
concentrations of cells, substrates, and products 
change during (fed-) batch cultivation, the value of 
kLa also changes. An example of change in kLa due to 
these factors is given in Sabra et al (2002). Changing 
kLa causes errors in the OUR calculation and the 
estimation of the specific growth rate and biomass. It 
is therefore essential to deal with time-varying kLa.

Offline measurements are mostly considered as not 
suited for control and estimation purposes, because 
they become available with a delay and at infrequent 
and irregular times. These measurements however 
contain valuable information about the states of the 
system and can make the estimator more robust 
(Dondo and Marqués, 2003). Amongst the literature 
on bioprocess monitoring (e.g. Bastin and Dochain, 
1990) the use of offline information for online 
estimation is relatively small. Myers et al. (1995) and 
Tatiraju et al. (1997) use offline and online 
measurements for state estimation, but do not 
estimate parameters; Lubenova et al. (2003); Gudi et 
al. (1995); Dondo and Marqués (2003); and Ignatova 
et al. (2003) estimate parameters in addition. In these 
approaches the parameters are part of the input-output 
equations. In this work, however, better results are 
obtained if the parameter kLa is considered as a part 
of the OUR calculations, which is done separately 
from the input-output equations (see figure 1).  

Fig. 1. System configuration (symbolic: see text or 
nomenclature).  

This work combines frequent online measurements 
(oxygen uptake rate) with infrequent offline 
measurements (biomass) to estimate the specific 
growth rate and biomass accurately. Figure 1 shows 
an overview of the system, in which two types of 
estimators an learning are involved: a frequent
estimator using the online data and an infrequent
estimator activated by sampled offline data. The 
offline measurements are also used to adapt the time-
varying kLa. After each run improved values for kLa
are obtained and can be used in a learning process to 
acquire the appropriate kLa time pattern. 

2. EXTENDED KALMAN FILTER 

The estimator is based on a nonlinear continuous-time 
model:  
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With f a nonlinear function of the states x and inputs 
u, and y the output. 

Lewis (1986) gives a good explanation of an 
Extended Kalman filter. The application in 
biotechnological applications is amongst others 
discussed by Gudi et al. (1995), Neeleman (2002) and 
Keesman (2002). The structure of a discrete time 
EKF is shown in Fig. 2, and is based on the following 
equations following Lewis (1986): 
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Where Ak and Ck and Bk at each time instant follow 
from discretization and linearization of Eq. 2 for a 
time step :
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and uk is the input vector. The initial states x0 are 
stochastic variables with average 0x and variance P0:
x0 ~ ( 0x ,P0); wk ~ (0, Qk) is system noise and consists 
of model errors an unknown inputs; and vk ~ (0, Rk) is 
measurement noise. The algorithm has two steps. The 
time update and the measurement update.  

2.1 Time update 

When a sample comes available at time k, first the 
time update k+1 is calculated using the original 
nonlinear model.  
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