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Abstract: Protein formation in recombinant protein production cannot yet be modeled in 
a way sufficiently accurate for process supervision and control. Here we propose using a 
new hybrid approach based on mass balances for the state variables involved, where the 
kinetics are represented by artificial neural networks (ANN). We first demonstrate by 
means of simulations that this method works well even when the networks are trained on 
noisy process data. Then, secondly, we show that the method is applicable to real fermen-
tation data. As an accompanying example we use an E.coli culture that produces a recom-
binant protein, namely the green fluorescent protein GFP, which remains dissolved within 
the cytoplasm. For this case the ANN resulted in a concrete relationship between the spe-
cific product formation rate π, the specific growth rate µ and the specific product concen-
tration p/x. The π(µ)-part of the relationship confirms what was obtained with a conven-
tional approach and the additional information about the influence of the specific product 
concentration characterizes the metabolic load of the cell. Copyright © 2007 IFAC 
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1. INTRODUCTION 

Bacterial fermentation is a major workhorse for pro-
ducing recombinant therapeutic proteins; hence, it is 
very desirable to derive optimal fermentation control 
strategies.  

As the mass of product that can finally be purified 
from the culture depends of the amount of biomass x 
employed and their performance, represented by 
their specific product formation rate π, one is inter-
ested in high cell density cultivations with well per-
forming cells (Lee 1996, Riesenberg and Guthke 
1999). In most industrial production systems, both 
factors determining product mass are primarily de-
pendent on the specific biomass growth rate µ. This 
may be trivial for x, but is in most cases also valid 
for π: The growth rate that a particular fermentation 
medium supports, determines the physiological state 

of the cells and particularly the cell’s protein-
synthesizing machinery, and in most industrially 
relevant cases, recombinant protein production is 
under growth rate control (Neidhardt et al. 1990). 
Consequently, much work has been devoted to con-
trolling the specific biomass growth rate in fermenta-
tion processes (Shioya 1992, Yoon et al. 1994, 
Levisauskas et al. 1996, Kim et al. 2004, Picó-Marco 
et al. 2005, Jenzsch et al. 2005, and 2006a, Soons et 
al. 2006). Numerical exploitable models of fermenta-
tion processes for recombinant protein manufacturing 
thus need a sufficiently accurate submodel relating 
the specific growth rate µ to the specific product 
formation rate π, the so-called π-µ-relationship (Pirt 
1993). 

Traditionally, optimal process trajectories have been 
obtained from mechanistic models of the processes 
under consideration (e.g. Levisauskas et al. 2003). 
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The latter can be derived step-by-step where the ac-
tual model version is used to compute the optimal 
process procedure, e.g. in terms of the productivity 
with respect to the product, and improvements of a 
model are deduced from the deviations between the 
predicted values and those measured in a validation 
experiment (Galvanauskas et al. 1997, 2004).  

Here we propose a new alternative to this basic ap-
proach which is purely data-driven. It has the disad-
vantage of needing much data, but the decisive ad-
vantage of not being restricted by unproven model 
assumptions. At running production plants the supply 
of many data records is not a problem at all, hence, 
in these cases, the advantages clearly prevail. 

The method proposed is based on artificial neural 
networks describing the more or less insufficiently 
known process kinetics within a well known set of 
basic mass balance equations. Since such hybrid 
modeling usually suffers from the fact that there are 
no directly measurable data for the key variables, e.g. 
µ and π, we must train the artificial neural networks 
depicting the really interesting kinetic relationships 
indirectly, extending the work of Simutis and Lüb-
bert (1997). We solved this problem by a stepwise 
training of neural networks using online measured 
variables and, additionally, corresponding off-line 
values for the amount of biomass x, and total product 
mass p. The result of this training procedure is a 
π(µ)-profile which can be used for process simula-
tion, and finally in process supervision and control. 

Validation of the model was performed at the exam-
ple of E.coli fermentations, where the soluble GFP, 
the green fluorescence protein was produced in its 
active form within the cells’ cytoplasm.  
 

2. STRUCTURE OF THE DATA-DRIVEN 
MODEL 

2.1 General idea behind the model. 

The backbone of the process model is a classical 
system of mass balance equations for all species, the 
masses of which are changing significantly during 
the cultivation process. The components considered 
here are total biomass x, and total product mass p.  

The first step in modeling the kinetics is representing 
the specific growth rate µ. It can be determined using 
nonlinear relationships in form of an ANN with im-
portant process variables such as carbon dioxide pro-
duction rate (CPR), total biomass x, time after induc-
tion tai , etc.. Also, other online variables can be used 
to strengthen this relation, e.g., the oxygen uptake 
rate, as well as the base fed into the reactor during 
pH control.  

     

This specific growth rate representation can directly 
be used within balance equations determining the 
amount of biomass. In the upper part of Figure 1 this 
procedure is schematically shown. It can be inter-
preted as an ANN-aided software sensor estimating 
the total biomass x. Once this ANN is trained, it can 
supply µ(t)-values for training the a second artificial 
neural network computing π. This procedure is 
shown in the lower part of Figure 1. 

2.2 Training of the artificial neural network system 

Simple feedforward networks are used that map the 
input variables across a hidden layer of 5 nodes (hy-
perbolic tangent) onto a single output variables µ or 
π respectively. As already mentioned, online meas-
urements data (CPR, tai, ...) are used as inputs to-
gether with biomass x and product p, estimated in the 
time step before. For network training we used off-
line measurement data for biomass x as well as total 
product mass p from previously performed experi-
ments.  

Figure 1: Scheme of the proposed procedure for identifi-
cation of the π(µ)-relationship. The artificial neural net-
works (ANN) are feedforward networks with a single 
hidden layer.  

Network training was based on the sensitivity equa-
tions approach (e.g., Schubert et al., 1994). This can 
be applied to train neural networks, which are incor-
porated into differential equation systems of the form  
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where W are weights of the neural network, and y are 
process state variables. The training is essentially a 
fit of this equation to experimental offline measure-
ment data for biomass x and product p. Its efficiency 
can be improved if the gradients  can be 
exploited. These gradients satisfy an ordinary differ-
ential equation that can easily be derived from equa-
tion (1) by partial derivatives with respect to the 
weights W.  
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Equation (2) is referred to as the sensitivity equation. 
With the solutions, the Wy ∂∂ /  values, the well 
known neural networks training procedures (back-
propagation, gradient methods, cf. e.g., Rumelhard 
and McClelland 1986) can be applied to train the 
neural network. 

The sensitivity equation approach for specific growth 
rate estimation appears when y is replaced by x, the 
biomass and equation (1) is specified by the equation 
defining the specific growth rate µ  
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