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Abstract: The sensitivity of measurements to unmeasured state variables strongly affects
the rate of convergence of a state estimator. To overcome potential observability problems,
the approach has been to identify the model parameters so as to reach a compromise
between model accuracy and system observability. An objective function that weighs the
relative importance of these two objectives has been proposed in the literature. However,
this scheme relies on an extensive heuristic search to select the weighting coefficients.
This paper proposes an objective function that is the product of measures of these two
objectives, thus alleviating the need for the trial-and-error selection of the weighting
coefficient. The proposed identification procedure is evaluated using both simulated and
experimental data, and with different observer structures. Copyright c©2007 IFAC
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1. INTRODUCTION

Observability tests typically provide a binary yes/no
answer and, thus, do not help assess whether practi-
cal observability problems such as slow convergence
of the state estimates will occur. A study has shown
that even an accurate bioprocess model can lead to
poor state estimates when the measurements have a
low sensitivity with respect to the unmeasured states
(Bogaerts and Vande Wouwer, 2004). To alleviate this
problem, the same authors have suggested a model
“falsification” procedure, in which the model param-
eters are identified so as to achieve a compromise
between model accuracy (via minimization of a crite-
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rion expressing the deviation between the model and
plant states) and system observability (via a measure
of observability based on sensitivity matrices). Un-
fortunately, the proposed objective function contains
a weighting coefficient that is best determined via a
trial-and-error procedure involving repeated optimiza-
tion.

The contribution of this paper is to propose an ob-
jective function that (i) achieves the aforementioned
compromise between model accuracy and system ob-
servability, and (ii) can be determined without trial-
and-error procedure. It turns out that the objective
function can be formulated as the product of two mea-
sures that are related to the sought objectives. This
study also compares the classical extended Kalman
filter (Maybeck, 1982) with a less classical (at least
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in bioprocess monitoring) particle filter (Doucet et
al., 2001) on two case studies, one in simulation and
the other using experimental data.

The paper is organized as follows. Section 2 sets the
notations for parameter identification and briefly re-
views the concept of nonlinear system observability.
Section 3 describes the parameter identification pro-
cedure for state estimation, while Section 4 details the
results obtained with a simulated example and a real-
life application. Finally, conclusions are provided in
Section 5.

2. PRELIMINARIES

2.1 Parameter identification

We consider continuous-time nonlinear models asso-
ciated with discrete-time measurements:

ẋ(t) = f(x(t),u(t),qqq ) x(0) = x0 (1)

yk = h(x(tk),qqq ) (2)

where x(t) ∈ Â nx is the state vector, u(t) ∈ Â nu the
input vector and yk ∈ Â ny the output vector at the
discrete time tk. qqq is the vector of parameters to be
identified. f and h are, in general, nonlinear vector
functions. For simplicity of notation, the time depen-
dency of the signals x(t) and u(t) will be dropped in
the sequel.

The parameter identification problem can be formu-
lated as follows:

(q̂qq , x̂0) = arg min
qqq ,x0

Jid(qqq ,x0) (3)

given model (1)− (2); ymeas

with

Jid(qqq ,x0) =
1

2N

N

å
k=1

(
ymeas,k −yk(qqq ,x0)

)T Q−1
k

(
ymeas,k −yk(qqq ,x0)

)
(4)

where ymeas,k represents the measured outputs at time
tk, Qk the covariance matrix of the measurement noise,
and N the data length. Note that, since the initial con-
ditions are rarely known in practice, they can be con-
sidered as decision variables as well. This is similar
to the approach taken in moving-horizon estimation
(Haseltine and Rawlings, 2005).

The properties of the resulting model can be analyzed.
In the context of the design of a state observer, system
observability is of paramount importance.

2.2 Observability of nonlinear systems

A system is said to be completely observable if it is
possible to reconstruct the state vector from a finite
number of output measurements. Global observability
analysis of nonlinear systems is a delicate task since
observability generally depends on the system inputs.
The analysis is made simpler through the introduction

of canonical forms (Zeitz, 1984; Zeitz, 1989). A sys-
tem is said to be globally observable if the nonlinear
model can be expressed in the following canonical
form (Gauthier and Kupka, 1994):

ẋ =





ẋ1

...

ẋi

...

ẋq−1

ẋq




=





f1(x1,x2,u)
...

fi(x1, ...,xi+1,u)
...

fq−1(x1, ...,xq,u)
fq(x1, ...,xq,u)




, (5)

y =





h1(x1
1)

h2(x1
1,x

1
2)

...

hn1(x
1
1, ...,x

1
n1

)



 (6)

with ∀i ∈ {1, ...,q} : xi =
[
xi

1, . . . ,x
i
ni

]T
,

n1 ≥ n2 ≥ ... ≥ nq, å
1≤i≤q

ni = nx

and if the following conditions are satisfied:

• ∀ j ∈ {1, ...,n1} :
¶ h j

¶ x1
j
6= 0 (7)

• ∀i ∈ {1, ...,q−1} , ∀(x,u) ∈ Â nx × Â nu :

rank

(
¶ fi(x,u)

¶ xi+1

)
= ni+1 (8)

This canonical form assumes that only the first state
subvector x1 is measured, i.e. ny = n1. Condition (7)
states that x1 can be inferred directly from the mea-
surements, whereas condition (8) implies a pyramidal
influence of the state subvector xi+1 on xi, so that any
differences in the state trajectory can be detected in
the measurements.

A convenient way to check condition (8) is to compute
the (ni+1)× (ni+1) matrix

Mi(x,u) =

(
¶ fi(x,u)

¶ xi+1

)T ( ¶ fi(x,u)

¶ xi+1

)
(9)

and check the rank condition:

rank [Mi(x,u)] = ni+1 (10)

It is shown in (Bogaerts and Vande Wouwer, 2004)
that an accurate process model can lead to poor esti-
mates when the matrices Mi(x,u) are ill-conditioned,
i.e. when the internal connections between state vari-
ables are somewhat “loose”, at least in some time
intervals. Upon analysis, this lack of connectivity is
generally related to the model structure and the selec-
tion of operating conditions.

3. IDENTIFICATION FOR STATE ESTIMATION

This section discusses two ways of including the ob-
servability issue in the parameter identification: (i) a
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