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A B S T R A C T

This paper provides experimental evidence for a rather important question: How do people reduce compound
lotteries? As an alternative to the reduction of compound lotteries axiom of expected utility, I also test the
compound independence axiom that can be employed by several decision theories. While the non-parametric
test does not reject the compound independence axiom, I do not find support for evaluation of compound
lotteries by the compound independence axiom through rank dependent utility that was used to motivate the
axiom. The reduction of compound lotteries axiom is tested by two methods used in the literature. The validity of
the axiom depends on the particular method used. While binary choices support the validity of the reduction
axiom, there is no evidence of evaluation of compound lotteries through the axiom. Furthermore, out-of-sample
predictions indicate that expected value is the best predictor of elicited certainty equivalents of compound
lotteries. Interestingly, expected utility is the best predictor of elicited certainty equivalents for simple lotteries.
The results suggest that subjects follow different mechanisms when evaluating compound lotteries as compared
to simple ones.

Introduction

A compound lottery refers to a lottery that allows the outcomes to
be lotteries themselves. Representing risky situations by compound
lotteries is closer to real life situations, especially if we consider the
opportunity cost of our choices. The reduction of compound lotteries
axiom of expected utility (EU) states that individuals are indifferent
between a compound lottery and it’s actuarially equivalent simple
lottery that generate the same probability distribution over outcomes.
To state this formally, let …S S S, , ,1 2 3 denote simple lotteries in a set φ.
The preference relation denoted by ⪰ is a binary relation on the φ
which allows the comparison of pairs.

Axiom 1. Reduction of compound lotteries (ROCL): Let
= … …S x p x p x p( , ; ; , ; ; , )i i n n1 1 1 and = … …S y q y q y q( , ; ; , ; ; , )i i n n2 1 1 . Then,

for all S1, S2∈φ and r∈ (0, 1) we have:

= − ∼ … − … −C S r S r x rp x rp y q r y q r( , ; , 1 ) ( , ; ; , ; , (1 ); ; , (1 )).n n n n1 2 1 1 1 1

Thus, any compound lottery is equivalent to its reduced form lottery
which has been called the actuarially equivalent lottery. Empirical
evidence has not always supported the ROCL axiom. See, for instance,
Bar-Hillel (1973), Kahneman and Tversky (1979), Bernasconi and
Loomes (1992), Miao and Zhong (2012), Abdellaoui et al. (2015), and
Bernasconi and Bernhofer (2017). This evidence has been produced
mainly by two methods. The first method uses binary choices to test the

consistency of choices when a compound lottery is replaced by its ac-
tuarially equivalent lottery (Harrison et al., 2015). The second method
is based on comparing the elicited certainty equivalents of compound
lotteries and their actuarially equivalent ones (Abdellaoui et al., 2015;
Miao and Zhong, 2012).

Since there are many studies (Hershey and Schoemaker, 1985;
Johnson and Schkade, 1989; Lichtenstein and Slovic, 2006), illustrating
that subjects are not consistent through different question frames, it is
reasonable to test the ROCL axiom by both methods and check for the
robustness of the result. Moreover, in this way we can examine the
phenomena of preference reversal (Lichtenstein and Slovic, 1971) in a
choice between a compound lottery and its actuarially equivalent lot-
tery.

Alternatively, from a theoretical point of view, Segal (1990) in-
troduced the compound independence axiom that does not require the
reduction principle. The compound independence implies that decision
makers evaluate compound lotteries using the certainty equivalents of
its possible first-stage outcomes (Bernasconi, 1994).1 The compound
independence axiom is the independence axiom adapted to two-stage
lotteries.

Axiom 2. Compound independence (CI) Consider the two-stage
compound lottery = −C S r S r( , ; , 1 )1 1 3 and = −C S r S r( , ; , 1 )2 2 3 . The
preference relation ⪰ satisfies the compound independence axiom if for
all S1, S2, S3∈φ and r∈ (0, 1) we have:
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C1⪰C2 if and only if S1⪰S2.

The CI axiom has been used as a justification for the validity of
random-lottery incentive mechanism in which the ROCL axiom of EU is
violated (Starmer and Sugden, 1991). If individuals satisfy the CI
axiom, then, the isolation effect is at work. The isolation effect was in-
troduced by Kahneman and Tversky (1979) as a simplifying process
that involves disregarding the common components of alternatives.
Tests of the isolation effect seem to be sensitive to the representation of
risky situations. When risky lotteries are transparent and the in-
dependence axiom is brought to the surface, the evidence supports the
isolation effect (Tversky and Kahneman, 1981, 1986; Conlisk, 1989;
Bernasconi, 1994; Cubitt et al., 1998). However, in more complex set-
tings (Harrison et al., 2015) or when the comparison is between simple
and two-stage/multi-stage lotteries, the isolation effect is violated (Cox
et al., 2014, 2015; Hopfensitz and Van Winden, 2008).

When both axioms are tested directly, there seems to be stronger
evidence supporting the CI axiom as compared to the ROCL (Kahneman
and Tversky, 1979; Bernasconi, 1992, 1994). For example,
Bernasconi (1994) finds that while 57% of choices are consistent with
the CI axiom, 43% of them are consistent with the ROCL axiom. When
considering different forms of independence axiom, Bernasconi (1992)
finds less impressive violations of the CI axiom as opposed to the ROCL
or the mixture independence that requires the reduction principal.

The methodology to test the CI axiom is constructed based on the
methods used to test the ROCL axiom. Hence, I test if the preference
ordering of two compound lotteries such as C1 over C2 follows the same
preference ordering as the distinguishing simple lotteries S1 over S2.
Second, using out-of-sample predictions, I test if there is a significant
difference between elicited certainty equivalents of compound lotteries
and those predicted by the CI axiom through rank dependent utility
(RDU) of Quiggin (1982). This is because Segal (1990, p. 375) used this
method to explain the pattern of preferences in problem 3 and 4 of
Kahneman and Tversky (1979) that are based on the Allais paradox.

The results of this experiment fails to reject the CI axiom. However,
the data does not support the reduction of compound lotteries by the
substitution of certainty equivalents through RDU. The results show
that the validity of the reduction axiom is sensitive to the method used
to test the axiom. While binary choices are consistent with the pre-
dictions of the ROCL axiom, I find differences in the evaluation of
compound and actuarially equivalent lotteries, thus rejecting the ROCL
axiom with the second method of analysis. This is consistent with the
general finding of more violation in the valuation task than in the
choice task (see, for example, Schmidt and Trautmann (2014) and
Harbaugh et al. (2010)).

Furthermore, while the expected value appears to be the best pre-
dictor of the certainty equivalent of compound lotteries, expected uti-
lity has the most predictive power for simple lotteries. These results
suggest that subjects evaluate simple and compound lotteries

differently.

1. Experimental design

The experiment had two stages. Stage I was designed for testing the
ROCL and the CI axioms by collecting subjects’ choices between lot-
teries. The evaluation mechanism of compound lotteries was tested in
stage II. In particular, stage II consists of eliciting certainty equivalents
of a number of simple and two-stage compound lotteries.

In stage I, subjects were asked to make a series of choices between
lottery pairs. However, they had the indifferent option as well.
Following the methodology of Harrison et al. (2015) for testing the
ROCL axiom, three types of lotteries were needed. These are compound
lotteries (C), their associated actuarially equivalent lotteries (AE) and
simple lotteries (S) that are used to construct three pairs of lotteries.
Namely, a −AE C pair, a −S C pair and a −S AE pair. I repeat this
process 10 times. Hence, there are 10 pairwise choices in each pair. The
lotteries used to construct 30 pairwise choices are presented in Table 1.

The ROCL axiom requires decision makers to be indifferent between
a given C lottery and its associated AE lottery. Hence, when confronted
with a choice from the −S C pair, the pattern of preferences should be
the same as the choice from the −S AE pair. That is if a subject prefers
C to S, s/he should prefer AE to S.

In order to test the CI axiom, I collect the pattern of preferences in a
set of choices between pairs of compound lotteries C1 and C2 which
have two distinguishing simple lotteries S1 and S2 in the second stage. I
also collect the pattern of preferences between S1 and S2. Hence, I de-
fine = −C S r x r( , ; , 1 )1 1 and = −C S r x r( , ; , 1 )2 2 where S1 and S2 are
the distinguishing simple lotteries. The CI axiom implies that the pre-
ference ordering of the two compound lotteries C1 and C2 follows the
same preference ordering as the distinguishing simple lotteries S1 and
S2. Table 2 shows these lottery pairs. While the −S S1 2 pairs have 10
choices, 5 of them are equivalent to S-AE choices. Hence, there were 45
choice questions.

In stage II, certainty equivalents of 30 simple and 10 compound
lotteries were elicited. The 10 aforementioned C and AE lotteries used
in stage I are included in this stage. This is to test subjects’ consistency
through different question frames and the evaluation mechanism of
compound lotteries. The remaining 20 simple lotteries were designed
such that the expected value of simple lotteries would follow a normal
distribution while covering a wide range of probabilities and outcomes
(see Table 3).

Each lottery in stage II was described and displayed by a decision
tree with a subsequent list of 20 equally spaced guaranteed amounts.
For each guaranteed amount, subjects had to indicate whether they
prefer the guaranteed amount or the lottery (see Appendix A). The
lottery’s certainty equivalent was calculated as the mean of the guar-
anteed amount that was offered when the subject switched preferences

Table 1
Lottery combinations.

pairs C Lotteries; = −C S r x r( , ; , 1 ) AE Lotteries S Lotteries EV

Probabilities = −S y q y q( , ; , 1 )1 2 x Outcomes Probabilities Outcomes Probabilities

r − r1 y1 y2 q − q1 Low High Low High Low High Low High

1 0.3 0.7 0 30 0.5 0.5 0 0 30 0.85 0.15 0 15 0.7 0.3 4.5
2 0.3 0.7 5 25 0.5 0.5 5 5 25 0.85 0.15 5 15 0.7 0.3 8
3 0.3 0.7 10 20 0.5 0.5 10 10 20 0.85 0.15 10 15 0.7 0.3 11.5
4 0.3 0.7 5 10 0.5 0.5 5 5 10 0.85 0.15 5 7.5 0.7 0.3 5.75
5 0.3 0.7 5 20 0.5 0.5 5 5 20 0.85 0.15 5 12.5 0.7 0.3 7.25
6 0.7 0.3 0 30 0.5 0.5 0 0 30 0.65 0.35 0 15 0.3 0.7 10.5
7 0.7 0.3 5 25 0.5 0.5 5 5 25 0.65 0.35 5 15 0.3 0.7 12
8 0.7 0.3 10 20 0.5 0.5 10 10 20 0.65 0.35 10 15 0.3 0.7 13.5
9 0.7 0.3 5 10 0.5 0.5 5 5 10 0.65 0.35 5 7.5 0.3 0.7 6.75
10 0.7 0.3 5 20 0.5 0.5 5 5 20 0.65 0.35 5 12.5 0.3 0.7 10.25
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