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A B S T R A C T

We often want to predict human behavior. It is well-known that the model that fits in-sample data best is not
necessarily the model that forecasts (i.e. predicts out-of-sample) best, but we lack guidance on how to select a
model for the purpose of forecasting. We illustrate the general issues and methods with the case of Rank-
Dependent Expected Utility versus Expected Utility, using laboratory data and simulations. We find that poor
forecasting performance is a likely outcome for typical laboratory sample sizes due to over-fitting. Finally we
derive a decision-theory-based rule for selecting the best model for forecasting depending on the sample size.

1. Introduction

The desire to understand and predict human behavior motivates
theorizing and building models of choice behavior, especially for si-
tuations in which the consequences of the choices are uncertain.
Von Neumann and Morgenstern (1953) axiomatized Expected Utility
(EU) theory, which has become the mainstream model in economics.
From its inception, the EU model has faced heavy criticism outside and
inside economics and has been subjected to laboratory testing. How-
ever, with rare exception (e.g. Wilcox, 2008 and Murphy and ten
Brincke, 2017), the testing has focused on showing how well EU and
alternative models fit the data rather than assessing the model's ability
to forecast (i.e. predict out-of-sample). In contrast, the focus of this
paper is on assessing the forecast performance of alternative models of
choice under uncertainty.

We will illustrate the general issues and methods with the case of
Rank-Dependent Expected Utility (RDEU) versus EU.1 Since the RDEU
model nests EU, RDEU can fit any data it is confronted with at least as
well as EU. However, a better fit does not imply a better forecast,
especially given the small sample sizes provided by laboratory experi-
ments. On a small sample, RDEU may fit significantly better than EU
because the extra parameter gives it the ability to fit the noise in the
sample (called “over-fitting”), which leads to biased parameter esti-
mates; hence, the RDEU forecast could be worse than the EU forecast.

To convince the reader that over-fitting is a real danger, we will
demonstrate the problem using the data from Hey and Orme (1994;

hereafter HO), which is one of the first papers to confront a variety of
decision theories with experimental data from a large number of well-
designed choice tasks. The standard statistical method to assess over-
fitting is the split-sample method of cross-validation2: the data is di-
vided into an “estimation” subset and a “holdout” subset. One estimates
the model parameters on the estimation subset, and then tests whether
this fitted model is the data generating process (DGP) for the holdout
subset. We find that the answer is negative, and we further show that
RDEU forecasts worse than EU.

There are two possible explanations for this finding: (i) RDEU over-
fit the data, and/or (ii) the behavior of the humans was not governed by
a single DGP throughout the experiment (i.e. the behavioral process
was not stationary). The second question that arises is whether the poor
forecast performance result for the HO data is statistically significant or
an artifact of this particular data.

Both of these questions can best be addressed using simulation
methods. First, in a simulation, the data generation process can be held
fixed for both the estimation and the holdout pseudo-data, so non-sta-
tionary behavior is ruled out as a possible explanation of poor forecast
performance. Second, a simulation can generate a good approximation
of the properties of any statistic for a given sample size, so the question
of statistical significance can be answered without relying in-
appropriately on asymptotic theory (e.g. Van der Vaart, 1998). Third, a
simulation can determine how large a sample should be for the over-
fitting danger to be negligible. Last, but not least, the simulations can be
used to find an optimal decision rule for which model to use when
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forecasting based on the size of the in-sample data.
Our simulation exercise demonstrates that the poor forecast per-

formance found using the HO data does not vanish when the DGP is
fixed, and that such poor forecast performance should be expected
given the typical laboratory sample sizes. Our simulations also indicate
that for accurate estimation and forecasting of the RDEU model, we
should have 200 or more binary lottery tasks - otherwise it would be
better to use the EU model. Finally, we show that a decision-theory
based conditional rule about which model to use for forecasting can
improve forecast performance, but still one should have at least 100
binary lottery tasks in the estimation data.

The paper is organized as follows. Section 2 specifies the RDEU
models. Section 3 describes the HO experiment and measures the
forecast performance on that data. Section 4 describes the simulation
exercise and presents the findings. Section 5 addresses the question of
how to choose a model for forecasting. Section 5 concludes with a
discussion.

2. The rank-dependent expected utility model

A convenient encompassing model is Rank-Dependent Expected
Utility3 (RDEU) (Quiggin, 1982, 1993), which nests EU. RDEU allows
subjects to modify the rank-ordered cumulative distribution function of
lotteries as follows. Let Y ^ {y0, y1, …, yn} denote the set of potential
outcomes of a lottery, where the outcomes are listed in rank order from
worst to best. Given rank-ordered cumulative distribution for a lottery
on Y, let Fj denote the cumulative probability up to and including yj. It
is assumed that the subject transforms Fj by applying an increasing
function H(Fj) with H(0)= 0 and H(1)= 1. From this transformation,
the individual derives modified probabilities of each outcome:

= = − = − −h H(F ), h H(F ) H(F ), ... and h 1 H(F ).0 0 1 1 0 n n 1 (1)

Common parametric specifications of the transformation functions
are
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where β>0. Arguing from symmetry that H(0.5) should equal 0.5,
Quiggin (1982) recommended Eq. (2a). Tversky and Kahneman (1992)
suggested Eq. (2b) because it allows the interior fixed point to differ
from 0.5. Lattimore et al. (1992) suggested Eq. (2c) which allows a
greater range on the shape and fixed point. Prelec (1998) provides an
axiomatic foundation for an alternative two-parameter transformation
(2d). For ease of reference, RDEU0 will refer to the EU model (i.e. β=1
and α=1); RDEU1 will refer to the model with Eq. (2a), RDEU2 to the
model with Eq. (2b), RDEU3 to the model with Eq. (2c), and RDEU4 to
the model with Eq. (2d).

Given value function v(yj) for potential outcome yj, the rank-de-
pendent expected utility is

∑≡U(F) v(y )h (F).
j

j j
(3)

To confront the RDEU model with binary choice data (FA vs. FB), we
assume a logistic choice function:

= +exp γ exp γ exp γProb(F ) { U(F )}/[ { U(F )} { U(F )}A A A B (4)

where γ≥ 0 is the precision parameter. Without loss of generality, we
can assign a value of 0 to the worst outcome and a value of 1 to the best

outcome.4 Accordingly, we specify v0 ^ v(y0)= 0 and vn ^ v(yn)= 1.
This leaves n-1 free utility parameters: vj ^ v(yj) for j= 1,…, n-1, with
the monotonicity constraint that vj≥ . vj-1 for j= 1,…, n. Hence, the
empirical RDEU0 model entails n parameters: (γ, v), the RDEU1 and
RDEU2 models entail n+ 1 parameters: (γ, v, β), and the RDEU3 and
RDEU4 models entail n+ 2 parameters (γ, v, β, α). It is obvious that
RDEU3 nests RDEU1 (when α=1), and RDEU1 and RDEU2 nest
RDEU0 (when α=1 and β=1).

Next, to specify the likelihood function for our data, let xi ^ {xi1,…,
xiT} denote the choices of subject i for T lottery pairs indexed by t ∈ {1,
… T}, where xit= 1 if lottery A was chosen, and 0 otherwise. Then the
probability of the T observed choices of subject i is the product of the
probability of each choice given by Eq. (4).5 For notational con-
venience, let θi ^ (γi, vi, βi, αi). Then, in log-likelihood terms:

∑≡ + − −
=
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Then, we define the total log-likelihood of the data as

∑≡θ θxLL( , ) LL(x , )
i

i i
(6)

where θ ^ {θi, i = 1, …, N}, and x ^ {xi, i= 1, …, N}.

3. The Hey-Orme experiment and performance tests

3.1. The experiment

Hey and Orme (1994; hereafter HO) is one of the first papers to
confront a variety of decision theories with experimental data from a
large number (100) of choice tasks.6 Each task was a choice between
two lotteries with three prizes drawn from the set {£0, £10, £20, £30}.7

A crucial design factor was the ratio of (i) the difference between the
probability of the high outcome for lottery A and the probability of the
high outcome for lottery B to (ii) the difference between the probability
of the low outcome for lottery A and the probability of the low outcome
for lottery B. It is insightful to represent this choice paradigm in a
Machina (2008) triangle, as shown in Fig. 1.

The ratio for the A-B pair is the slope of the dotted line connecting A
and B, which is greater than 1. The ratio for the A’ -B’ pair (dashed line)
is clearly less than 1. According to EU indifference curves are parallel
straight lines with positive slope in this triangle, and the indifference
curves of a risk neutral subject would have slope equal to 1. A wide
range of ratios was used in order to identify indifference curves and to
test the implications of EU (as well as alternative theories).

3 This model is the same as the Cumulative Prospect (Tversky and Kahneman, 1992)
model restricted to non-negative monetary outcomes.

4 Since we estimate one precision parameter for all choice tasks, this scale specification
is not simply the assumption of affine invariance; it is also an assumption about the
magnitude of “noise” implicit in the logistic function relative to the payoffs.
Wilcox (2008) argues for a re-scaling for each choice task. While we agree that re-scaling
may be needed for diverse choice tasks, we feel that in the context of the HO tasks, since
all four payoffs were encountered many times in succession, a re-scaling for the entire set
is more appropriate. To test our intuition, we estimated the Wilcox-type EU model for the
HO data (which he used), and we found it fit slightly worse than a EU model without
rescaling for each task. This different finding may be due to our using only the first 100
tasks of HO and estimating individual parameters rather than a random coefficient spe-
cification.

5 As pointed out by Harrison and Swarthout (2014), this specification implicitly as-
sumes the “compound independence axiom”. Since we view EU and RDEU as behavioral
models, we are comfortable with this implicit assumption.

6 These 100 tasks were presented to the same subjects again one week later. We do not
consider that data here because the test that the same model parameters that best fit the
first 100 choices are the same as those that best fit the second 100 choices fails. Possible
explanations for this finding are (i) that learning took place between the sessions, (ii)
preferences changed due to a change in external (and unobserved) circumstances, and
(iii) the subjects did not have stable preferences. Therefore, we focus our attention on the
first 100 choice tasks.

7 £ is the British pound.
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