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a b s t r a c t

We use a novel method to calculate in closed form the Coulomb electrostatic potential created by a
uniformly charged cube at an arbitrary point in space. We apply a suitable transformation of variables
that allows us to obtain a simple presentation of the electrostatic potential in one-dimensional integral
form. The final concise closed form expression of the Coulomb electrostatic potential of the uniformly
charged cube is obtained after completing the calculation of the resulting one-dimensional integrals.
Such integrals consist of combinations of products of error functions and power functions that can be
solved exactly despite their intimidating appearance. The exact analytic formula for the Coulomb elec-
trostatic potential that we derive reflects the symmetry of the cube and is easy to implement. We
illustrate its use by calculating the exact values of the electrostatic potential at some points of symmetry
such as the center of cube, center of face of cube, center of edge of cube and corner of cube.

© 2015 Elsevier B.V. All rights reserved.

Introduction

Calculation of the electrostatic potential created by charged
bodies is very important to many fields [1e3]. Obviously, if the
charged body under consideration has arbitrary shape and if the
distribution of charge is arbitrary, then no exact analytical results
are available. However, if the charged body has regular features/
symmetries and is uniformly charged, then one may have a chance
to calculate its electrostatic potential in analytic form. This is the
reason why regular bodies have always drawn a huge interest over
long time periods for their importance to various models in physics
and mathematics. In particular, uniformly charged bodies with
spherical symmetry (spheres, spherical shells, etc) or cylindrical
symmetry (cylinders, disks, etc) allow one to obtain exact expres-
sions [4,5] for the electrostatic potential in some cases quite trivi-
ally (for instance, the case of spheres). On the other hand, uniformly
charged bodies with nospherical shape are notoriusly more chal-
lenging. Interest on them stems from the fact that geometric figures
with nospherical shape (for instance, polyhedra where the cube is
the simplest of them) can be used as models for irregular bodies.
Therefore, it is not surprising to discover that some of the earlier
work found in the literature dealt with cubes. In particular, astro-
physical studies of gravitational forces dealt with the calculation of

the gravitational potential created by a uniformly filled (homoge-
neous) polyhedra (with cube as a special case) [6,7]. To our
knowledge, the gravitational potential of a uniformly filled paral-
lelopiped (cube) was apparently first calculated explicitly by Mac-
Millan [8]. Calculations are difficult and the work represents a
masterful use of direct integration techniques. The final analytic
expression obtained in closed form contains a very large number of
terms and is quite long [8].

The key objective of this work is to calculate the Coulomb
electrostatic potential created by a uniformly charged cube at some
arbitrary point in space by adopting a different approach that
simplifies the calculations and leads to a much more concise pre-
sentation of the final result. Themethod used differs from the direct
integration approach implemented by other authors [8e11].
Another benefit of this method is that it allows us to obtain a very
simple presentation of the electrostatic potential as a one-
dimensional integral function. Explicit calculation of the resulting
one-dimensional integrals leads us to the final closed form exact
result, a compact sum of only eight terms.

The model under consideration consists of a cube with length, L
uniformly filled with some positive charge, Q. We want to calculate
exactly the Coulomb electrostatic potential created by such
a uniformly charged cube at some arbitrary point, r!¼ ðx; y; zÞ in
three dimensions (3D). We write the expression for the electro-
static potential at any arbitrary point in 3D space as:
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Vðx; y; zÞ ¼ ker0

Z
D

d3r0
1�� r!� r!0��; (1)

where ke is Coulomb's electric constant, r0 ¼ Q/L3 is the uniform 3D
charge density of the cube, r!

0
and r! are 3D position vectors and D

is the cubic domain of integration. We choose the origin of a Car-
tesian system of coordinates at the center of cube and the axes
parallel to its edges, thus:

D : �L
2
� x0; y0; z0 � þL

2
: (2)

Our approach hinges upon a suitable transformation of

1=
�� r!� r!0�� as a function of auxiliary variables, a transformation that

eventually leads us to a simpler expression for the electrostatic
potential. In the present case, the method leads to a very concise
presentation of the potential, firstly, in one-dimensional integral
form and, secondly, in closed analytic form, once the integrals are
calculated. The integral presentation of the Coulomb electrostatic
potential is convenient for numerical calculations since the inte-
grand function is easy to handle numerically. Even though the
calculation of the resulting one-dimensional integrals is chal-
lenging, we were able to calculate them exactly in analytic form.
Differently from the direct integration approach sketched in
Appendix A, our method leads to certain type of integrals that are
not commonly found in textbooks. For this reason, we deem it
important to provide a detailed description of several integration
formulae thatwederive. Thesemathematical results can be found in
Appendix B, Appendix C, Appendix D, Appendix E and Appendix F.
These formulae allow us to complete the calculations rather easily,
thus, they are essential to this work. Only after having obtained all
the required analytical formulae for various non-standard integrals
appearing during the solution process, we proceed to obtain an
explicit analytical expression. Since the calculation of the electro-
static potential at points of symmetry is important, we also provide
the exact values of the electrostatic potential at the center of cube,
center of face of cube, center of edge of cube and corner of cube.

In Method we explain the general solution method. In
Electrostatic potential at the center of cube, Electrostatic potential
at the center of face of cube, Electrostatic potential at the center
of edge of cube and Electrostatic potential at the corner of cube
we list the results for the value of the Coulomb electrostatic po-
tential created by a uniformly charged cube at given special points
of symmetry. The general closed form result for the Coulomb
electrostatic potential created by an arbitrarily charged cube in the
surrounding space is given in Electrostatic potential at an arbitrary
point. A brief summary of the work is given in Conclusions.

Method

As outlined in Appendix A, calculation of V(x,y,z) in Eq. (1) by
direct integration does not appear to be extremely challenging at
the beginning. However, as shown by many authors [8e11], this
approach grows in complexity very quickly and, at the end, one has
to deal with long cumbersome mathematical expressions. As a
result, one is always tempted to find alternative routes to solve the
problem in a quicker and more transparent way. In this work we
solve the problem by adopting a different approach that does not
start with direct integration. To this effect, we write the quantity
1=j r!� r!

0
j in Eq. (1) as an integral function of a new auxiliary

variable:

1�� r!� r!0�� ¼ 2ffiffiffi
p

p
Z∞
0

du e�u2ð r!� r!0Þ2 : (3)

The anticipation is that, this way, the integration over the vari-
ables x

0
, y

0
and z

0
that appear in the expression in Eq. (1) will be

carried out without much difficulty. Note that:

�
r!� r!0�2 ¼ ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2: (4)

By substituting the result from Eq. (3) into Eq. (1), one has:

Vðx; y; zÞ ¼ ker0
2ffiffiffi
p

p
Z∞
0

du
ZþL

2

�L
2

dx0e�u2ðx�x0Þ2

�
ZþL

2

�L
2

dy0e�u2ðy�y0Þ2
ZþL

2

�L
2

dz0e�u2ðz�z0Þ2 :

(5)

The integrals with respect to x0, y0 and z0 are easy to calculate
[12,13]. In addition, we can simplify the expressions if we introduce
dimensionless variables:X¼ x/L,Y¼ y/L, Z¼ z/L andX0 ¼ x0/L,Y0 ¼ y0/L,
Z0 ¼ z0/L.With the change of variables, we have:�1/2� X0,Y0,Z0 � þ 1/
2. In termsof thenewvariables,dudx0 dy0 dz0 ¼ L2dt dX0 dY0 dZ0,where
t¼ u L is another dummy variable. Straightforward calculations lead
us to the followingexpression for theCoulombelectrostatic potential
created by a uniformly charged cube:

VðX; Y ; ZÞ ¼ keQ
L

2ffiffiffi
p

p
Z∞
0

dt f ðt;XÞf ðt; YÞf ðt; ZÞ; (6)

where f(t,X), f(t,Y) and f(t,Z) are auxilary functions. Specifically:

f ðt;XÞ ¼
ffiffiffi
p

p
2t

�
erf
�
t
�
1
2
� X

	

þ erf

�
t
�
1
2
þ X

	
�
; (7)

where

erf ðxÞ ¼ 2ffiffiffi
p

p
Zx
0

dt e�t2 ; (8)

is an error function (See Pg. 297 of Ref. [14]). Note that f(t,Y) and
f(t,Z) are obtained from Eq. (7) by, respectively, replacing X with Y
and X with Z. Note that the form of the auxiliary functions reflects
the symmetry of the problem under consideration. For instance,
one can see that:

f ðt;�XÞ ¼ f ðt;XÞ: (9)

Obviously, the result in Eq. (9) mirrors the fact that
V(�X,Y,Z) ¼ V(X,Y,Z) which is easy to deduce from the cubic sym-
metry. The integral presentation in Eq. (6) is not only simple, but
also very convenient for numerical calculations since the auxiliary
functions in the integrand are smooth and do not have singularities.
For instance, it is easy to verify that, for a given finite value of X:

lim
t/0

f ðt;XÞ ¼ 1; lim
t/∞

f ðt;XÞ ¼ 0: (10)

The usefulness of the result in Eq. (6) is self-evident if, for
example, one wants to calculate the Coulomb self-energy (ES) of a
uniformly charged cube:

ES ¼
ker20
2

Z
D

d3r
Z
D

d3r0
1�� r!� r!0�� ¼ r0

2

Z
D

d3rVð r!Þ: (11)

It is straightforward to prove that:
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