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Abstract: The paper introduces modern concepts and tools from affine geometry into 
power system analysis. It is shown that such an approach allows: i) a new non linear 
formulation of such classical problems as load flow and state estimation, ii) a more 
efficient way of solving such problems through non iterative methods. The new approach 
is illustrated for a small but representative example of a load flow for a two-bus network. 
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1. AFFINE GEOMETRY: AN INTRODUCTION 
 

In many power system applications, some of the 
physical quantities involved in the formulation and 
the solution of the related problems are expressed 
either as complex numbers of a 1-dimensional 
complex space C

1 or as vectors of a 2-dimensional 
real space R

2. Both approaches have their proper 
merit. In the complex space C1 all the four arithmetic 
operations among the set of its complex numbers i.e.: 
addition, subtraction, multiplication and division are 
allowed. The elements of a real space R

2, called 

vectors, are regarded as entities involved in linear 
operations, i.e.: multiplication of a vector by a scalar 
and the addition of two vectors. This vector space is a 
linear space. However, this may constitute a 
limitation, since a vector space contains only vectors 
of the same nature (for instance, power, or voltage or 
current vectors, etc., but not a combination of two or 
more vectors of different nature). In this paper, the 
authors emphasize the geometric aspects and the 
physical meaning of the affine space associated with 
the vector space usually used in the investigation of 
power system load flow problem (Petroianu, 1969). 
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A 2-dimensional affine space E is a space of points 
associated to a vector space E

ur
 of the same 

dimension, in the sense that: i) for each pair of points 
(a, b) !  E, the difference (a-b) between them is a 
vector AB

uuur
 in the vector space E

ur
, ii) For each vector 

in the vector space E
ur

and for each point in the affine 
space E, adding the vector to this point results in an 
another point in the affine space E, iii) every triplet of 
points (a, b, c) !  E satisfies the relationship (a-b) + 
(b-c) = (a-b).  Therefore, there is an one-to-one 
mapping of the elements of the two associated spaces 
(Beklémichev, 1988). 
 
An affine space E may be visualized itself as a linear 
space by choosing in it an arbitrary point O, called the 
origin, and in the appropriate vector space E

ur
 a basis 

(e1, e2). If a is an arbitrary point in E, together with 
the coordinate origin O, it defines a vectorOA E!

uuur ur
, 

the radius vector of the point a, which in terms of the 
basis (e1, e2), may be expressed as OA

uuur
= x1e1 + x2e2. 

The coefficients x1, x2 are called the affine 
coordinates of the point a. As any space, the affine 
space is defined by its geometry. In the spirit of the 
Erlangen Programm, insisting on the concept of the 
group rather than that of the space, Klein (1974) saw 
any geometry, including the affine geometry, as the 
study of invariants under a group of transformations. 
An affine transformation, as linear mapping from an 

IFAC Symposium on Power Plants and Power Systems Control, Kananaskis, Canada, 2006

101



     

affine space to another affine space (or to itself), is 
any transformation that preserves parallelism of lines 
and the ratio of distances between colinear points. In 
a 2-dimensional affine space, to map a point (x, y) to 
a point (x�, y�) four main affine transformations, or 
linear combinations of them, may be used (Klein, 
2004): 
 
1. � rotation by an angle ! counter clockwise about   

the origin, 
                        x� =   x cos! + y sin!                       (1) 
                        y� =  -x sin! + y cos!                       (2) 
 
2. � reflection in the x axis, 
                                     x� =    x                                (3) 
                                     y� =  - y                                (4) 
3. �  scaling, 
                                     x� =  "x x                              (5) 
                                     y� =  "y y                              (6) 
4. �  translation, 
                                     x� =  x + µx                          (7) 
                                     y� =  y + µy                          (8) 
 

The affine transformations make the general affine 
group GA (2, R), which is a semidirect product of the 
general linear group and the translations in E by 
vectors of E

ur
. The essential difference between an 

affine and a vector space consists in the fact that in 
the affine space the operation of adding a vector to a 
point is allowed. The operations solely on points are 
also possible, but only under certain conditions: this 
is the subject of barycentric calculus (see Mõbius 
(1827) or Delode (2000)). An affine space, not being 
dependent on a specific choice of a coordinate 
system, is the appropriate framework in dealing with 
motions, trajectories, and physical or 
electromagnetical forces, among other things. 

 
 

2. AFFINE GEOMETRICAL APPROACH TO THE 
LOAD FLOW PROBLEM  

 
2.1 Power system load flow formulation 
 

In power system analysis, the class of problems 
related to load flow (planning and operating versions) 
is of a mathematically non-linear type. In planning 
environment, the load flow problem assumes the 
knowledge of power injections and values of 
electrical parameters of network elements. The 
solution consists in finding the nodal voltages 
(module and angle). For a component of the network, 
for example a line (Figure 1), the apparent power 
flows are expressed as follows: 
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     Fig. 1.  Electrical line representation: # model 
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mk = Smk - i0.5V2
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In the equations (9) and (10) the voltages are complex 
numbers represented by their modules and angles, i.e. 
Vm, Vk respectively, $m, $k with the difference: 
 
                             %mk = $m - $k                               (11) 
 

considered to be positive (all over this paper the 
hypothesis is made that m is the sending and k the 
receiving nodes of the active power). Analytically, 
the complex powers Smk and Skm are as follows: 
 

  S
mk

 = V
 m 

(V*
m

 - V*
k
)(g

mk
+ ib

mk
) =  P

mk + iQmk
    (12) 

  S
km

 =  V
 k 

(V*
k
 - V*

m
)(g

mk
+ ib

mk
) =  P

km + iQkm  
  (13) 

 

where 
                     gmk  = Rmk /(R

2
mk + X2

mk)                   (14) 
                     bmk  

= Xmk /(R
2
mk + X2

mk)                   (15) 
 

In (12) and (13) Pmk, Pkm are the active and Qmk, Qkm 
the reactive powers. They represent the real and the 
imaginary parts of the complex numbers Smk and Skm: 
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mk
g

mk
+V

m
V

k
sin%

mk
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  Q
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mk
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mk
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mk
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From the above expressions, the active and reactive 
powers in (9) and (10) are: 
                                     P�

mk = Pmk                               (20) 

                                 P
�
km = P

km                               (21) 

                     Q�
mk = Q

mk � 0.5V2
mBcap

mk                  (22) 

                     Q�
km = Q

km � 0.5V2
kB

cap
mk                   (23) 

 
With a known voltage (module and angle) at a chosen 
reference bus, the system to be solved has 2(N-1) non 
linear equations of bus power injections, expressed as 
sums of adjacent power transit of type (16) to (19), 
and (N-1) voltage modules and (N-1) voltage angles 
as variables. Its iterative solution is a well known 
procedure (for a detailed treatment of it, see Debs 
(1988) or Eremia, et al, (2000)).  
 
2.2 Bus voltage module  
 
By taking into account (14) and (15), the angle &mk is 
defined as: 
                            tan&

mk = bmk / gmk                        (24) 
 
With the radius 'mk of the circle (see Figure 2) 
expressed as:  

                         'mk 2 2

mk mk= g + b                    (25) 

 
the following trigonometric functions may be derived 
for the angle 2&mk: 
 

                   cos2&
mk

 =  (g2
mk  - b

2
mk) / '

2
mk               (26) 

                   sin2&
mk

  =     (2gmkbmk) / '
2

mk               (27) 
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