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a  b  s  t  r  a  c  t

This paper  analyzes  the learning  and  stability  of mixed  strategy  Nash  equilibria  in games
of strategic  substitutes  (GSS),  complementing  recent  work  done  in the  case  of  strategic
complements  (GSC).  Mixed  strategies  in  GSS  are of  particular  interest  because  it is  well
known  that such  games  need  not  exhibit  pure  strategy  Nash  equilibria.  First,  we  establish
bounds  on  the  strategy  space  which  indicate  where  randomizing  behavior  may  occur  in
equilibrium.  Second,  we  show  that  mixed  strategy  Nash  equilibria  are  generally  unstable
under  a  wide  variety  of learning  rules.  Multiple  examples  are  given.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Many positive results have been established in the literature on games of strategic substitutes (GSS) in terms of the
characterization of solution sets, adaptive learning processes, and comparative statics properties.1 The analysis of this
wide class of games, however, has concentrated mainly on situations where players are assumed to play pure strategies
only, and although it is well known that such games need not exhibit pure strategy Nash equilibria (PSNE), the role of
mixed strategies has largely been ignored. It is therefore important to explore conditions under which players may  find
it optimal to randomize over their set of actions, and if mixed strategy Nash equilibria (MSNE) offer good long-run pre-
dictions of behavior. By drawing on a connection in GSS between learning in repeated play and rationalizability, it is first
shown that under very general conditions, players may  learn to play in a manner consistent with mixed behavior. As a
consequence, a sufficient condition for global stability is obtained. The main result, however, confirms that MSNE with non-
degenerate support do not generally offer good predictions by showing that they are unstable under a wide range of learning
rules.

The validity of MSNE as an equilibrium prediction has long been a topic of discussion in economics. The classical argument
against them is as follows: If opponents are behaving in such a way as to make a player indifferent between a subset of her
actions, why would randomizing be preferred to simply choosing a pure strategy best response? One response to this
argument has been by way of Harsayni’s Purification Theorem, which proves that if players privately observe a sequence
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1 See Dubey et al. (2006), Roy and Sabarwal (2010), and Roy and Sabarwal (2012), for example.
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of i.i.d. random shocks to their payoffs, then a mixed equilibrium emerges in the resulting game of incomplete information
which approximates the original mixed equilibrium.2

More recent studies have asked whether, if randomizing behavior is to be understood in the framework of players
committing to a distribution over their actions when an underlying game is repeated over time, players can eventually learn
to play according to an equilibrium distribution. Work along these lines has been conducted in a variety of game-theoretic
settings. Crawford (1985) shows that purely mixed strategy Nash equilibria are always unstable under gradient dynamics.3

Fudenberg and Kreps (1993), Kaniovski and Young (1995), and Benaim and Hirsch (1999) study the convergence to mixed
equilibria in 2 × 2 games and 3 × 2 games, whereas Ellison and Fudenberg (2000) study the stability of MSNE in 3 × 3 games.
Hofbauer and Hopkins (2005) investigates such stability in 2-player, finite-action games under a smooth fictitious play
learning process, and Benaim et al. (2009) study convergence in games whose Nash equilibria are mixed and unstable under
fictitious play-like learning. The notion of stable MSNE has also found important applications in large population games,
specifically in the context of price dispersion. Hopkins (2008) describes, and gives evidence for, the phenomenon of price
dispersion, where different sellers of a homogenous product charge different prices. These situations often arise due to
incomplete information among consumers as to who  the lowest price seller is, and can be described by mixed strategy
dispersed price equilibria. Hopkins and Seymour (2002) find mixed results as to the stability of such equilibria, showing
that when consumer behavior is fixed, convergence is possible in some cases. On the other hand, Lahkar (2011) finds that all
dispersed price equilibria are unstable under perturbed best response dynamics, while Lahkar and Riedel (2014) find that
they are not generally stable under logit dynamics.

This paper is most closely related to Echenique and Edlin (2004), which considers the stability of mixed strategy Nash
equilibria in games of strategic complements (GSC) when the set of players is finite and action spaces are a complete lattice.
The heart of the analysis lies in exploiting a complementarity between the order structure inherent in GSC and a quite
general assumption on how players update their beliefs, which includes Cournot and fictitious play learning. Specifically, if a
player makes a small mistake in her beliefs about equilibrium behavior by shifting an arbitrarily small amount of probability
towards the largest action in the support of opponents’ MSNE profile, then this upward shift (in FOSD) of beliefs implies that
she will best respond by playing a strategy higher than her equilibrium mixed strategy. A subsequent update in beliefs again
results in an even higher upward shift in FOSD, resulting in an even higher response. This pattern continues on indefinitely,
so that intended play never returns to the original MSNE. A similar argument can be made when the underlying game is a
GSS, as the next example illustrates.

Example 1. Consider the following slight variation to the 3-player Dove–Hawk–Chicken game presented in Roy and
Sabarwal (2010):

where ε ∈ (0, 1). This is a GSS which has no PSNE. One would hope, therefore, that a MSNE would provide a good prediction
of play. After calculating the best-response functions, we obtain:
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is a MSNE. Now suppose that players make a slight error in their judgement

about the behavior of others, so that for  ̨ > 0 small, player i believes that all other players j /= i will play �j =
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.
Then in the first round, each player best-responds uniquely by playing D, or �i = (1, 0). If players are Cournot learners, so
that in each successive round they best-respond only to the profile played in the previous round, then in the second round,
each player i best responds uniquely by playing H, or �i = (0, 1). Continuing in this manner, we see that play therefore enters
a cycle: (D, D, D), (H, H, H), (D, D, D), . . .,  etc., and it never again becomes optimal to best respond by mixing evenly among

2 See Govindan et al. (2003) for a shorter and more general proof of this result.
3 As opposed to the best-response dynamics studied here. See Jordan (1993) for a discussion.
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