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a b s t r a c t

An external electric field applied to two conducting spheres in close approach is enhanced (by charge
separation on the spheres) in the region between the spheres. For spheres of equal size, this enhancement is
a universal function of the ratio of the separation of the spheres to their radius, and increaseswithout limit as
this ratio decreases. We calculate the enhancement factor analytically for perfectly conducting spheres,
providing a simple formula validwhen the spheres are close together, that iswhen the enhancement is large
and the known series solution is difficult to evaluate. The samemethods allow us to find the close-approach
forms of the longitudinal and transverse polarizabilities of the two-sphere system.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The stimulus for thiswork comes from the very large electric field
enhancement factors that have been achieved in surface enhanced
Raman spectroscopy, enabling the detection of Raman signals from
single molecules [1,2]. The problem that we discuss here, that of
enhancement of the external electric field by two metal spheres, has
been treated both for perfectly conducting spheres [3e9], and with
realistic values of the metal dielectric function at optical frequencies
[10e20]. Even in the perfectly conducting case, the solution requires
the computation of infinite series, which converge more and more
slowly as the spheres come closer together. In the case of dielectric
spheres, an infinite set of equations for the expansion coefficients
must be truncated and then solved, before the series are summed.

Here we return to the problem of two perfectly conducting
spheres, and provide a simple formula which becomes more
accurate as the physically interesting limit of nearly touching
spheres is approached. This formula allows rapid back-of-the-
envelope estimates of the field enhancement for a given ratio of the
sphere separation s to radius r of the spheres. The field enhance-
ment factor to be derived is
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E0 is the external electric field, Eave the average field in the gap
between the spheres, along the line of centres. For r/s¼ 1000
(r¼ 1 mm, s¼ 1 nm, for example), this formula gives 696.38 for the
field enhancement ratio, accurate to 1 part in 10,000.

With the same techniques, we also derive the near-approach
analytic forms of the longitudinal and transverse polarizabilities of
the two-sphere system, and show that for sphere separation smuch
smaller than the sphere radius r these are
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Here gz 0.5772 is Euler’s constant and zð3Þ ¼
XN
n¼1

n�3z1:202.

The results are restricted to the electrostatic problem with
perfectly conducting spheres, which is adequate provided the
spheres are small compared to the wavelength of the incident light,
and provided the real part of the dielectric function of the spheres is
numerically large, so that electric fields are normal to the conductor
surfaces. The latter proviso holds quitewell in the far infrared, but is
not so good in the visible.

The electrostatic problem is discussed in Maxwell’s treatise [3],
and a complete solution was given by Jeffery [4] nearly a century
ago, using bispherical coordinates. His solution is in terms of two
infinite series, which converge rapidly provided the separation ofE-mail address: john.lekner@vuw.ac.nz
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the spheres is not small compared to their radius. However, it is
precisely at very small separations that the field enhancement is
large, and we provide analytical formulae which apply in this limit.
More recent work [5e9] (none quoting Jeffery, incidentally) does
not consider this limit.

2. The solution in bispherical coordinates

Fig.1 shows the orthogonally intersecting circles which form the
bispherical coordinate system (u,v), defined by

uþ iv ¼ ln
rþ iðzþ bÞ
rþ iðz� bÞ (1)

Here r2¼ x2þ y2, and the surfaces u¼ constant are spheres whose
centres lie on the axis of symmetry, the z-axis. The length b deter-
mines the scale of the diagram. In terms of the bispherical coor-
dinates (u,v) the radial and axial coordinates are given by

r ¼ b
sin v

cosh u� cos v
; z ¼ b

sinh u
cosh u� cos v

(2)

If we set u¼ u0 and eliminate v, we obtain the circles

r2 þ ðz� bcoth u0Þ2 ¼ b2cosech2 u0 (3)

The orthogonal system of circles results when we set v¼ v0 and
eliminate u:

ðr� bcot v0Þ2þz2 ¼ b2cosec2 v0 (4)

All of the v¼ constant circles pass through the points r¼ 0,
z¼�b. From (3), the surfaces u¼�u0 are spheres with radii r0 and
centres at �z0, where

r0 ¼ b
sinh u0

; z0 ¼ b
cosh u0
sinh u0

(5)

The ratio of the distance between the centres to the diameter of
the spheres is thus cosh u0. We are interested in close approach,
when this ratio is close to unity, and thus in small u0.

Let V(r,z) be the electrostatic potential for the two-sphere
problem. Jeffery [4] shows that

Vnðr; zÞ ¼ ðcosh u� cos vÞ1=2sinh
�
nþ 1

2

�
u Pnðcos vÞ (6)

solves Laplace’s equation. (He also considers the more general case
with azimuthal dependence, which we do not need here.) Suppose
the external electric field is downwards in Fig. 1, and the spheres
u¼�u0 are uncharged and at potentials �V0. Then the potential on
and outside of the two spheres is given by [5,6]

Vðr; zÞ ¼ E0zþ ðcosh u� cos vÞ1=2
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where

An ¼ 23=2½V0 � ð2nþ 1ÞE0b�
h
eð2nþ1Þu0 � 1

i�1
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and

V0 ¼ E0b
Nðu0Þ
Dðu0Þ

(9)

The numerator N and denominator D in the last expression are
the infinite sums
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The external electric field E0 separates charges on the (neutral)
spheres, placing opposing charges on the nearby parts of the
spheres, thus increasing the local electric field. When the spheres
are close, the increase can be very large. The enhancement factor f is
given by

f ¼ Nðu0Þ
Dðu0Þ

coth
u0
2

(11)

This is the ratio of the average field along the z-axis in the gap of
length s0 between the spheres, to the external field E0. The sepa-
ration distance (the distance of closest approach) is

s0 ¼ 2z0 � 2r0 ¼ 2b tanh
u0
2

(12)

and the voltage difference between the spheres is 2V0, so
f ¼ Eave=E0 ¼ ð2V0=s0Þ=E0, which gives (11) on substitution from
(9) and (12).

The maximum local value of E is larger than Eave, and occurs on
the z-axis, at z¼�s0/2. When the spheres are close together rela-
tive to their radii, Emax tends to Eave. When the spheres are far apart
compared to their radii, Emax tends to 3Eave, since then the average
field tends to E0, and the maximum field to 3E0 (the value at the
poles of the spheres). Thus Emax/Eave varies from three to unity. The
full expression [7] for Emax is considerably more complicated than
that for Eave. Since Emax tends to Eave in the physically interesting
large-enhancement limit, we shall use the simpler enhancement
ratio f¼ Eave/E0.

Fig. 1. The bispherical coordinate system. The z-axis is vertical, x and y axes are
horizontal. The scale length b has been set equal to unity. The values u¼ 1, 1/2, 1/4 give
the circles centred on the upper z-axis, and the same negative values give the circles on
the lower z-axis. The inner circles are u¼ 1, �1. As u decreases the circles get larger,
and closer together. The three-dimensional picture is obtained by rotation of the figure
about the z-axis. In the problem considered here, the u¼ constant circles (rotated
about the z-axis) represent the spherical conductors. The orthogonal system of circles
then gives the (toroidal) field lines in the case of oppositely charged conductors in zero
external field. It is illustrated by the values v¼ 1, 1/2, 1/4.
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