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Cable transient voltages due to microphonics

Kenneth L. Kaiser�, Karen I. Palmer

Kettering University, Flint, MI 48504, USA

Received 22 July 2005; received in revised form 21 May 2007; accepted 21 May 2007

Available online 21 June 2007

Abstract

Expressions for the voltage generated by tribocharging between a cable’s dielectric and outer conductor, and the maximum voltage

across a resistive load of a cable, are derived as a function of time. For a reasonably large load resistance and cable capacitance, the

expressions reduce to simple single-time-constant equations that can be used to estimate the highest frequency of interest of the generated

noise. The derived expressions can also assist the designer in weighing the tradeoffs associated with changing the ohmic resistance and

capacitance of low-noise cables.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

When a cable is mechanically stressed through twisting,
compression, or flexion, the cable itself generates noise,
referred to as microphonics. This noise can be due to
piezoelectric effects, changes in cable capacitance, and
tribocharging. The limited literature in this area [1–5]
indicates that tribocharging between the dielectric and the
conductors is often the major contributor of this cable-
generated noise. Assuming a cable is properly selected so
that effects such as reflections and crosstalk are negligible,
microphonics can be important for some small-signal
applications. The signal-to-noise ratio can be severely
affected in these applications.

2. The model

In this paper, the simple model used by Perls [2] to model
the voltage generated by a separation of charge between
the conductor and dielectric is analyzed and refined.
Assume that positive charge exists (or is ‘‘generated’’) on
the inner surface of the outer conductor of an initially
uncharged coaxial cable, and minus charge of equal
magnitude exists on the outer surface of the dielectric in

direct contact with this conductor over some local area.
This charge displacement can be produced by contact and
friction between these two materials. The actual sign and
magnitude of these charges is a complicated function of
factors such as the material composition, contaminates,
contact area, and rubbing velocity. Assume that very
quickly (compared to the smallest relevant time constant in
the system, including the propagation time down the cable)
the conductor and dielectric are separated, resulting in a
charged capacitor C1 having an air dielectric as shown in
Fig. 1. Mechanical energy is imparted to the system and
converted initially to an electrical energy of C1V

2
1=2.

Although generally a dielectric surface is not an equipo-
tential surface, this surface is assumed to be approximately
so in this discussion, so that the capacitance between the
dielectric surface and conductor can be (easily) defined.
This surface and conductor can be considered two ‘‘plates’’
of a capacitor. As the separation distance increases, this
capacitance decreases and is time varying. Since the total
charge Q1 on each of the plates is constant where
Q1 ¼ C1V1, the voltage across this air capacitor increases
as the separation distance increases. This separation is
assumed to occur instantaneously or at least much faster
than the connecting circuitry can respond. Hereafter, the
previously considered variable C1 becomes the final fixed
value of this capacitance. The capacitor C2 is the local fixed
capacitance between the dielectric surface and the inner
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conductor near this air capacitor. The capacitor C3 is the
sum of the remaining capacitance of the cable and load.
These other two capacitors are assumed initially un-
charged. Again, the electrical energy initially exists only
in C1, even though C1 is in series with C2.

3. Analytical analysis

This model assumes that the voltage across C1 changes
instantaneously from 0 to a positive v1(0

+) at t ¼ 0. The
voltage across C3 (and hence the load resistor RL) cannot
change instantaneously since C3 is distributed and a
nonzero impedance exists between C1 and C3. This
impedance is simply modeled as Rs in Fig. 2, which is the
ohmic resistance of the conductors. This resistance also
prevents the voltage across C2 from changing instanta-
neously. The inductance of the conductors is not modeled.

Without inductance, the response of this circuit is
obviously overdamped and nonoscillatory, and the re-
sponse has two time constants. Although these time
constants will be determined rigorously shortly, an
approximation for them can be determined by inspection.
Initially, C3 looks like a short circuit since it has 0V across
it. An approximation for the time constant of this initial
response, assuming one time constant is much larger than
the other, when the voltage across the load is rising is

tr ¼ ReqCeq ¼ Rs
C1C2

C1 þ C2
. (1)

After C3 is charged to some value near its peak, the
current through Rs will decrease, and the time constant of
the response when the voltage across the load is falling is
about

tf ¼ ReqCeq ¼ RLC3. (2)

The capacitors C1 and C2 appear like opens during this
period under this approximation. It is reasonable to
assume that C3bC2 and C2bC1 and RLbRs; therefore,
tfbtr. The initial charging of C3 is fast while the
discharging through RL is slow.

The expression for the voltage across the load is
determined using Laplace transforms. The s-domain circuit
is shown in Fig. 3 where Cx ¼ C1C2=ðC1 þ C2Þ. The initial
voltage across C1 is modeled in the circuit through
v1ð0

þÞ=s; which is also the Laplace transform of a step
voltage of amplitude v1ð0

þÞ. The expression for the load

voltage is obtained using voltage division

VL sð Þ ¼
v1ð0

þÞ

s

RLkð1=sC3Þ

ðRLkð1=sC3ÞÞ þ Rs þ ð1=sCxÞ

¼
v1ð0

þÞ=RsC3

s2 þ sððRLCx þ RsCx þ RLC3Þ=RsRLCxC3Þ þ ð1=RsRLCxC3Þ
.

ð3Þ

(The units for this expression are V sec. When the inverse
transform is taken, the units become V.) The Laplace
transform pair from [1]

e�at � e�bt

b� a

� �
uðtÞ3

1

ðsþ aÞðsþ bÞ
, (4)

can be used to determine the inverse transform. The
variables a and b are obtained using the quadratic
equation

a; b ¼ �

� RLCxþRsCxþRLC3

RsRLCxC3

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RLCxþRsCxþRLC3

RsRLCxC3

� �2
� 4

RsRLCxC3

r

2
,

(5)

ARTICLE IN PRESS

C1

C2 C3 RL

− − − − −−−−− − −− − −
+ ++++++++++++ +

inner conductor
outer conductor

dielectric

dielectric

air

Fig. 1. Tribogenerated charges over a small area in a coaxial cable.
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Fig. 2. Lumped-circuit model of the situation shown in Fig. 1.
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Fig. 3. Frequency-domain version of the circuit in Fig. 2.
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