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Abstract

The funicular  concept has often been used in different stages of structural analysis and design. This paper presents two new methods: Analytical,
A-FDM, and Numerical  method, N-FDM, based on a parametric application of the original Force  Density  Method  (FDM). This is an especially
useful way of visualizing a set of solutions and optimizing, i.e. selecting one specific funicular  related to a set of constraints. Two structural
algorithms are implemented iteratively with Maple® in real time, and output is also linked to AutoCAD®. Maple® facilitates control of geometrical
constraints, while AutoCAD® helps to show all parameterized data. Because of their practical interest, special emphasis is placed on masonry
structures using a Limit  Analysis  approach  and preliminary design. Examples of the application of both methods are depicted.
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1.  Introduction

1.1.  Form-finding  versus  the  Force  Density  Method

Most unstressed 2D and 3D tensile bar structures are kine-
matically indeterminate. As a result, their final equilibrium
configuration geometry, i.e. the position of the nodes, is a priori
unknown. The search for an initial shape compatible with a set
of loads and constraints is termed form-finding.

A tensile structure can be seen as a materialization of a 3D
funicular. This is also the case for masonry structures when a
Limit Analysis  approach  is used, as the problem here is also
based on the funicular  concept. The link between form-finding
methods and funicular  analysis  is therefore straightforward.

The Force  Density  Method,  FDM  (Linkwitz & Schek, 1971;
Schek, 1974) was developed in the 1970s as a form-finding  pro-
cedure for cable tensile structures (Grundig, Moncrieff, Singer,
& Ströbel, 2000).

∗ Corresponding author.
E-mail address: cercadillo@hpal.es (C. Cercadillo-García).

Peer Review under the responsibility of Universidad Nacional Autónoma de
México.

FDM  was selected for this research due to four main consid-
erations: (1) It manages equilibrium equations in a totally direct
way, and is therefore especially suited for a funicular  solution;
(2) equilibrium equations are linearized, which simplifies the
numerical process, even though an iterative analysis is usually
needed; (3) no pre-sizing is required for this method; this is a cru-
cial question for many approaches and particularly for the two
new applications addressed; and (4) the three equilibrium equa-
tions are uncoupled, an important property that will be exploited
here.

1.2.  Funicular  analysis  versus  masonry  structures

Funicular  analysis  refers to the use of a 2D or 3D funicular
as an analytical tool at any stage of the analytical process. Addi-
tional assumptions would also make it a design tool, as in the
case of masonry structures Limit  Analysis. The funicular  con-
cept is not restricted to linear elements, e.g. cable structures,
but could also be applied to surface elements, e.g. for creating
membranes.

This paper will describe a wire frame model, either linked
with linear elements or representing membrane discretization,
with special focus on the case where there is only tension or
internal compression force; although some procedures are valid
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for both tension and compression if proper constraints are con-
sidered.

The first application of Limit  Analysis  theory  (Kooharian,
1952) for the analysis and design of masonry structures has being
notably expanded and consolidated (Heyman, 1966, 1969).

The assumptions inside this frame are: (i) Constitutive equa-
tions are rigid-plastic, with no tensile strength but infinite
compressive strength, (ii). Friction between the voussoirs is
sufficient to prevent failure due to sliding between them; (iii).
Stability is only considered inside a rigid multi-body model and
according to the first assumption (i).

A high span or great depth of the mortar between voussoirs
would make the first assumption impossible, (i) Assumption (ii)
can be checked a posteriori. The validity of assumptions (i) and
(iii) run quite parallel. Nevertheless, in the majority of cases, the
said assumptions can be applied, and then funicular  analysis  is
really simple: the structure is safe (Lower  Bound  Theorem  or
Safe Theorem) if at least one thrust-line, i.e. a funicular, can be
traced inside the geometrical boundaries of the structure (Poleni,
1748). This is in fact quite an old supposition, but once it has
been included within the framework of Limit  Analysis  its level
of reliability becomes clear. The use of form-finding  methods
for funicular  analysis  is therefore totally justified.

The question of adding constraints for selecting a particular
funicular has been approached in different ways. One of the first
was to use linear programming (Livesley, 1978). In the Force
Network Approach,  FNA  (O’Dwyer, 1999) the equilibrium path
is fixed in one plane, in this case in the horizontal one, i.e. the
projection of the 3D funicular in this plane therefore the thrust
is fixed. Afterwards, the ordinates of the funicular target are
obtained by linear programming. This method limits its applica-
tion to the case where loads are perpendicular to the plane where
the equilibrium path is fixed (usually the horizontal one), which
is its most important drawback.

The idea of fixing the 3D funicular projection into a plane
together with thrust in the corresponding directions had been
proposed for cable tensile structures, and is known as the Grid
Method, GM  (Siev & Eidelman, 1964). The condition of vertical
equilibrium makes it possible to obtain coordinates perpendic-
ular to the grid, giving rise to a system of linear equations. GM
was also limited to the case of load perpendicular to the grid. A
similar approach was used in fixing the horizontal path of the
funicular in a grid together with thrust. Equilibrium is resolved
iteratively node by node (Berger, 1996).

FDM  is especially suited for fixing the funicular  path in one
plane, as the equilibrium equations in three perpendicular direc-
tions are uncoupled. As was pointed out above, this property is
one of the main advantages of the method.

Thrust  Network  Analysis, TNA  (Block, Ciblac, & Ochsendorf,
2006; Block & Ochsendorf, 2007; Block, 2009) is strongly con-
nected with FNA, but adds parallel handling of the reciprocal or
dual figure to horizontal projection, i.e. the force diagram, and
the use of the FDM.

The Analytical, A-FDM, and the Numerical  method, N-
FDM, are both described in this article. They are based
on parametric application of the original FDM  for obtain-
ing funicular  solutions, and were independently proposed

by the authors (Cercadillo-García & Fernández-Cabo, 2010;
Cercadillo-García, 2014).

1.3.  Funicular  analysis  versus  preliminary  design

Preliminary  design  refers to the application of a 2D or 3D
funicular  for selecting the initial shape of a structure, assuming
that a funicular  shape leads to high structural efficiency.

The use of physical models to support preliminary design has
been present throughout the history of construction. Hanging
models have been used to trace the funicular. The well-known
case of Antoni  Gaudí  may constitute the highest expression. In
the 1960s and 1970s physical models were replaced by computer
models.

Tensile structures needed computer models, and funicular
analysis is now consolidated as an independent area. Together
with other new architectural lines such as using free  (i.e. organic)
forms. Computational improvements are promoting and chal-
lenging this working line (Kilian & Ochsendorf, 2005).

1.4.  Funicular  analysis  versus  the  parametric  method

Parametric  refers in part to the parametric capability of tools
used in symbolic computation in e.g. Maple®; but it mainly
describes to the nature of the proposed method, such as search-
ing for a specific funicular, which is parameterized in terms of
independent variables.

This paper presents a new method, the Parametric  Force
Density Method, for tracing a selected 2D or 3D funicular
(Cercadillo-García, 2014). This method is developed in different
ways: Analytical, A-FDM, and Numerical, N-FDM, extensions
of FDM. The application of the methods to the fields of masonry
structure and preliminary design are specifically addressed.

The mathematical software Maple® is used to implement
structural algorithms, and its capability to work symbolically
is especially important. AutoCAD® is used as a graphical and
geometrical tool. Maple® results are exported to AutoCAD®

compatible files, and both environments are linked in real time.

2.  Method

2.1.  Original  FDM

FDM  states the problem for a pin-jointed structure of straight
bars. Let m  be the number of bars, n  the number of total nodes of
the structure, nf the number of free or unconstrained nodes, and
nc the number of fixed or constrained nodes. Load, pi, is located
at the nodes. For the node number i, their Cartesian coordinates
are (xi, yi, zi).

The Branch-node  matrix  was known originally as the Inci-
dence matrix, [C]. Its rows are linked with the branches or bars,
ordered from 1 to m, and its columns are linked with the nodes
(but dividing the free and constrained nodes, as will be shown).
If i(m) is the initial node number of the branch m  and j(m) its
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